Cardiac Diagnostic Feature and Demographic Identification (CDF-DI): An IoT Enabled Healthcare Framework Using Machine Learning
Abstract
:1. Introduction and Related Work
2. Problem Statement
3. Contribution and Significance
- The multi-collinearity removal feature is applied to enhance the accuracy of all predictive algorithms for patient’s demography with selected features. Additional, a 10-fold CV method found the best generalization to a robust predictive model among eight machine learning classifiers based on MCC, F1-Score, and accuracy ranking performance metrics.
- The model also facilitates verifying the impact of patients’ complication levels like anemia, BP levels, diabetes levels towards SC and SS using Mann-Whitney non-parametric test. Further, gender and smoking level association are also verified with statistics.
- The proposed model also used the Survival analysis tool for ascertaining the impact of age group levels on the Survival-Status levels variable.
- This model resolved security issues through the digital certificates and PKI data encryption to ensure the security of patients’ data.
- During unprecedented time of Covid-19 pandemic, the presented IoT framework has an important utility for the patients in their self-isolation or self-quarantine. They can also send their daily health symptoms to their doctors via their IoT wearable devices. Therefore, the existing health system can also be improved and rapid with the present research.
- The present IoT based framework can be helpful in decision-making method that accurately predicts patient’s demography like age group (Adult and Very Old), Gender (Woman/Man) and Survival-Status (Alive/Dead) of cardiac patients.
- The selected significant features such as SS, SC, EF, platelets, and CPK might be helpful to cardiac doctors to diagnose their patients.
4. Materials and Methods
4.1. Objectives
- Objective 1: To explore the impact of SC and SS on the Survival-Status level of the patient.
- : No significant difference between Alive and Dead towards SC and SS.
- Objective 2: To explore an impact of SC and SS on anemia, diabetes, and High BP levels of the patients.
- : No significant difference between non-anemic and anemic levels towards SC and SS.
- : No significant difference between non-diabetic and diabetic levels towards SC and SS.
- : No significant difference between Normal BP and High BP towards SC and SS.
- Objective 3: To explore the association of gender and smoking habit of the patient.
- : No significant association between gender with smoking habits.
- Objective 4: To explore the impact of age group on the survival-Status levels (censored/Dead) of the patient.
- : No significant association between Age-Group levels and Survival-Status levels.
- Objective 5: To identify the Age-group of HF patient based on significant features.
- Objective 6: To recognize the gender of HF patient based on significant features.
- Objective 7: To predict the HF patient’s Survival-Status levels based on the significant features.
4.2. IoT Enabled CDF-DI Framework
4.3. Work Flow Diagram
4.4. Dataset Description
4.5. Preprocessing
5. Models Hyperparameter Tuning
6. Encryption and Remote Access
7. Simulation Setup
8. Machine Learning Experiment Design
9. Performance Evaluation Metrics
10. Experiments and Results
10.1. Experiment-1
10.2. Experiment-2
10.3. Experiment-3
10.4. Experiment-4
10.5. Experiment-5
10.6. Experiment-6
10.7. Experiment-7
11. Discussion
12. Limitation
13. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IoT | Internet of things |
CVD | CardioVascular Diseases |
HF | Heart Failures |
HD | Heart Disease |
SC | Serum Creatinine |
SS | Serum Sodium |
EF | Ejection Fraction |
CPK | Creatinine Phosphokinase |
BP | Blood-Pressure |
DT | Decision Tree |
RF | Random Forest |
SD | Standard Deviation |
SVM | Support Vector Machine |
KNN | k-Nearest Neighbors |
XGB | eXtreme Gradient Boosting |
GBM | Gradient Boosting Machines |
LR | Logistic Regression |
LNR | Linear Regression |
AUC | Area Under Curve |
VIF | Variation Inflation Factor |
GNB | Gaussian Naive Bayes |
Mdn | Median |
TPR | True Positive Rate |
TNR | True Negative Rate |
CMs | Confusion matrics |
PKI | Public Key Infrastructure |
References
- Mohammad Ayoub, K. An IoT framework for heart disease prediction based on MDCNN classifier. IEEE Access 2020, 14, 34717–34727. [Google Scholar]
- Stepanova, M.; Eremin, O. Universal Multi-platform Interaction Approach for Distributed Internet of Things. In The International Conference on Deep Learning, Big Data and Blockchain (Deep-BDB 2021); Awan, I., Benbernou, S., Younas, M., Aleksy, M., Eds.; Lecture Notes in Networks and Systems; Springer: Cham, Swizterland, 2021; Volume 309. [Google Scholar]
- Abdel-Basset, M.; Gamal, A.; Manogaran, G.; Son, L.H.; Long, H.V. A novel group decision making model based on neutrosophic sets for heart disease diagnosis. Multimed. Tools Appl. 2019, 79, 9977–10002. [Google Scholar] [CrossRef]
- Kumar, P.M.; Gandhi, U.D. A novel three-tier Internet of Things architecture with machine learning algorithm for early detection of heart diseases. Comput. Electr. Eng. 2018, 65, 222–235. [Google Scholar] [CrossRef]
- Kumar, P.M.; Lokesh, S.; Varatharajan, R.; Babu, G.C.; Parthasarathy, P. Cloud and IoT based disease prediction and diagnosis system for healthcare using Fuzzy neural classifier. Future Gener. Comput. Syst. 2018, 86, 527–534. [Google Scholar] [CrossRef]
- Park, S.J.; Hussain, S.; Hong, D.; Kim, H.; Park, H.; Benjamin, H.C.M. Real-time Gait Monitoring System for Consumer Stroke Prediction Service. In Proceedings of the 2020 IEEE International Conference on Consumer Electronics, Las Vegas, NV, USA, 4–6 January 2020. [Google Scholar]
- Park, S.J.; Hong, S.; Kim, D.; Seo, Y.; Hussain, I.; Hur, J.H.; Jin, W. Development of a real-time stroke detection system for elderly drivers using quad-chamber air cushion and IoT devices. SAE Tech. Paper 2018, 86, 1–5. [Google Scholar]
- Professionals, M. Cardiovascular Diseases. Available online: https://www.mayoclinic.org/medical-professionals/cardiovascular-diseases (accessed on 23 May 2021).
- Arabasadi, Z.; Alizadehsani, R.; Roshanzamir, M.; Moosaei, H.; Yarifard, A.A. Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm. Comput. Methods Programs Biomed. 2017, 141, 19–26. [Google Scholar] [CrossRef]
- He, F.J.; Li, J.; Macgregor, G.A. Effect of longer-term modest salt reduction on blood pressure. Cochrane Database Syst. Rev. 2013, 4, 1–15. [Google Scholar] [CrossRef]
- The Trials of Hypertension Prevention Collaborative Research Group. Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure. The Trials of Hypertension Prevention, phase II. Arch. Intern. Med. 1997, 157, 657–667. [Google Scholar] [CrossRef]
- Cook, N.R.; Cutler, J.A.; Obarzanek, E.; Buring, J.E.; Rexrode, K.M.; Kumanyika, S.K.; Appel, L.J.; Whelton, P.K. Long term effects of dietary sodium reduction on cardiovascular disease outcomes: Observational follow-up of the trials of hypertension prevention (TOHP). BMJ 2007, 334, 885–888. [Google Scholar] [CrossRef] [Green Version]
- Patel, Y.; Joseph, J. Sodium Intake and Heart Failure. Int. J. Mol. Sci. 2020, 21, 9474. [Google Scholar] [CrossRef] [PubMed]
- Akhter, M.W.; Aronson, D.; Bitar, F.; Khan, S.; Singh, H.; Singh, R.P.; Burger, A.J.; Elkayam, U. Effect of elevated admission serum creatinine and its worsening on outcome in hospitalized patients with decompensated heart failure. Am. J. Cardiol. 2004, 94, 957–960. [Google Scholar] [CrossRef]
- High Creatinine Levels: Causes, Symptoms, and When to Seek Help. Available online: https://www.medicalnewstoday.com/articles/when-to-worry-about-creatinine-levels#symptoms (accessed on 23 May 2021).
- Abebe, T.B.; Gebreyohannes, E.A.; Bhagavathula, A.S.; Tefera, Y.G.; Abegaz, T.M. Anemia in severe heart failure patients: Does it predict prognosis? BMC Cardiovasc. Disord. 2017, 17, 248. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; Rawal, I.; Jabbour, S.; Prabhakaran, D. Tobacco and Cardiovascular Disease: A Summary of Evidence. In Disease Control Priorities, Third Edition (Volume 5): Cardiovascular, Respiratory, and Related Disorders; Prabhakaran, D., Anand, S., Thomas, A., Jean-Claude Mbanya, G., Wu, Y., Nugent, R., Eds.; The World Bank: Washington, DC, USA, 2017; pp. 57–77. [Google Scholar]
- Huxley, R.R.; Woodward, M. Cigarette smoking as a risk factor for coronary heart disease in women compared with men: A systematic review and meta-analysis of prospective cohort studies. J. Hypertens. 2017, 35, 2214–2225. [Google Scholar] [CrossRef]
- Anbuselvan, P. Heart Disease Prediction using Machine Learning Techniques. Int. J. Eng. Res. Technol. 2020, 9, 515–518. [Google Scholar]
- Curtis, A.B.; Karki, R.; Hattoum, A.; Sharma, U.C. Arrhythmias in Patients >=80 Years of Age: Pathophysiology, Management, and Outcomes. J. Am. Coll. Cardiol. 2018, 71, 2041–2057. [Google Scholar] [CrossRef]
- North, B.J.; Sinclair, D.A. The intersection between aging and cardiovascular disease. Circ Res. 2012, 110, 1097–1108. [Google Scholar] [CrossRef]
- Yazdanyar, A.; Newman, A.B. The burden of cardiovascular disease in the elderly: Morbidity, mortality, and costs. Clin. Geriatr. Med. 2009, 25, 563–577. [Google Scholar] [CrossRef] [Green Version]
- Dugani, S.B.; Moorthy, M.V.; Li, C.; Demler, O.V.; Alsheikh-Ali, A.A.; Ridker, P.M.; Glynn, R.J.; Mora, S. Association of Lipid, Inflammatory, and Metabolic Biomarkers With Age at Onset for Incident Coronary Heart Disease in Women. JAMA Cardiol. 2021, 6, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Rashid, S.M.; Ferdous Khan, M.N.; Biswas, A.; Mahmud, A. Symptom Wise Age Prediction of Cancer Patients using Classifier Comparison and Feature Selection. In Proceedings of the 22nd International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 18–20 December 2019. [Google Scholar]
- Vaughan, A.S.; Ritchey, M.D.; Hannan, J.; Kramer, M.R.; Casper, M. Widespread recent increases in county-level heart disease mortality across age groups. Ann. Epidemiol. 2017, 27, 796–800. [Google Scholar] [CrossRef] [Green Version]
- Horvath, S.; Gurven, M.; Levine, M.E.; Trumble, B.C.; Kaplan, H.; Allayee, H.; Ritz, B.R.; Chen, B.; Lu, A.T.; Rickabaugh, T.M.; et al. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol. 2016, 17, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, J.L.; Jones, J.; Bolleddu, S.I.; Vanthenapalli, S.; Rodgers, L.E.; Shah, K.; Karia, K.; Panguluri, S.K. Cardiovascular Risks Associated with Gender and Aging. J. Cardiovasc. Dev. Dis. 2019, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, E.J.; Muntner, P.; Alonso, A. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef] [PubMed]
- Villa, A.; Rizzi, N.; Vegeto, E. Estrogen accelerates the resolution of inflammation in macrophagic cells. Sci. Rep. 2015, 5, 15224. [Google Scholar] [CrossRef] [PubMed]
- Korot, E.; Pontikos, N.; Liu, X. Predicting sex from retinal fundus photographs using automated deep learning. Sci. Rep. 2021, 11, 10286. [Google Scholar] [CrossRef] [PubMed]
- Li, J.P.; Haq, A.U.; Din, S.U.; Khan, J.; Khan, A.; Saboor, A. Heart Disease Identification Method Using Machine Learning Classification in E-Healthcare. IEEE Access 2020, 8, 107562–107582. [Google Scholar] [CrossRef]
- Chicco, D.; Jurman, G. Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Med. Inform. Decis. Mak. 2020, 20, 16. [Google Scholar] [CrossRef]
- Ishaq, A.; Sadiq, S.; Umer, M.; Ullah, S.; Mirjalili, S.; Rupapara, V.; Nappi, M. Improving the Prediction of Heart Failure Patients’ Survival Using SMOTE and Effective Data Mining Techniques. IEEE Access 2021, 9, 39707–39716. [Google Scholar] [CrossRef]
- Li, C.; Hu, X.; Zhang, L. The IoT-based heart disease monitoring system for pervasive healthcare service. Procedia Comput. Sci. 2017, 112, 2328–2334. [Google Scholar] [CrossRef]
- Gia, T.N.; Dhaou, I.B.; Ali, M.; Rahmani, A.M.; Westerlund, T.; Liljeberg, P.; Tenhunen, H. Energy efficient fog-assisted IoT system for monitoring diabetic patients with cardiovascular disease. Future Gener. Comput. Syst. 2019, 93, 198–211. [Google Scholar]
- Zhou, Y.; Zheng, S.; Wang, L. Privacy-Preserving and Efficient Public Key Encryption with Keyword Search Based on CP–ABE in Cloud. Cryptography 2020, 4, 28. [Google Scholar] [CrossRef]
- Doukas, C.; Maglogiannis, I.; Koufi, V.; Malamateniou, F.; Vassilacopoulos, G. Enabling data protection through PKI encryption in IoT m-Health devices. In Proceedings of the IEEE Proceedings of 12th International Conference on Bioinformatics & Bioengineering, Larnaca, Cyprus, 11–13 November 2012; pp. 25–29. [Google Scholar]
- Wenger, N.K. Coronary heart disease: The female heart is vulnerable. Prog. Cardiovasc. Dis. 2003, 46, 199–299. [Google Scholar] [CrossRef]
- D’Souza, R.D.; Silversides, C.K.; Tomlinson, G.A.; Siu, S.C. Assessing Cardiac Risk in Pregnant Women With Heart Disease: How Risk Scores Are Created and Their Role in Clinical Practice. Can. J. Cardiol. 2020, 36, 1011–1021. [Google Scholar] [CrossRef]
- de Marvao, A.; Alexander, D.; Bucciarelli-Ducci, C.; Price, S. Heart disease in women: A narrative review. Anaesthesia 2021, 76, 118–130. [Google Scholar] [CrossRef]
- Chien, T.M.; Lu, Y.M.; Li, C.C.; Wu, W.J.; Chang, H.W.; Chou, Y.H. A retrospective study on sex difference in patients with urolithiasis: Who is more vulnerable to chronic kidney disease? Biol. Sex Differ. 2021, 12, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.; Munir, A.; Bhatti, S.H.; Aftab, M.; Raza, M.A. Survival analysis of heart failure patients: A case study. PLoS ONE 2017, 12, e0181001. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Kundu, N.; Rani, G.; Dhaka, V.S. Machine Learning and IoT based Disease Predictor and Alert Generator System. In Proceedings of the 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 11–13 April 2020; pp. 764–769. [Google Scholar]
- Asuncion, A.; Newman, D. UCI Machine Learning Repository. Tech. Rep. 2007. Available online: https://ergodicity.net/2013/07/ (accessed on 24 May 2021).
- Pawlovsky, A.P. An ensemble based on distances for a k-NN method for heart disease diagnosis. In Proceedings of the 2018 International Conference on Electronics, Information, and Communication (ICEIC), Honolulu, HI, USA, 24–27 January 2018. [Google Scholar]
- Makki, S. An Efficient Classification Model for Analyzing Skewed Data to Detect Frauds in the Financial Sector. Ph.D. Thesis, Université de Lyon, Université libanaise, Lyon, France, 2019. [Google Scholar]
- Larriva-Novo, X.; Villagrá, V.A.; Vega-Barbas, M.; Rivera, D.; Sanz Rodrigo, M. An IoT-Focused Intrusion Detection System Approach Based on Preprocessing Characterization for Cybersecurity Datasets. Sensors 2021, 21, 656. [Google Scholar] [CrossRef] [PubMed]
- Sklearn.Ensemble.RandomForestClassifier-Scikit–Learn 0.24.1 Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html (accessed on 24 May 2021).
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13 August 2016. [Google Scholar]
- Pradhan, B.; Bhattacharyya, S.; Pal, K. IoT–Based Applications in Healthcare Devices. J. Healthc. Eng. 2021, 2021, 6632599. [Google Scholar] [CrossRef]
- Taiwo, O.; Ezugwu, A.E. Smart healthcare support for remote patient monitoring during covid-19 quarantine. Informatics Med. Unlocked 2020, 20, 100428. [Google Scholar] [CrossRef]
- Single Board Computer, Raspberry Pi IV. Available online: https://www.raspberrypi.org/ (accessed on 24 July 2021).
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Construction of Tree from a Learning Sample. In Classification and Regression Trees, 1st ed.; Taylor & Francis Group: Abingdon, UK, 1984; pp. 21–23. [Google Scholar]
- Boyd, C.R.; Tolson, M.A.; Copes, W.S. Evaluating trauma care: The TRISS method. Trauma Score and the Injury Severity Score. J. Trauma 1987, 27, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Liu, Q.; Chen, S.; Liu, Y.; Zhang, C.; Liu, R. XGBoost-Based Algorithm Interpretation and Application on Post-Fault Transient Stability Status Prediction of Power System. IEEE Access 2019, 7, 13149–13158. [Google Scholar] [CrossRef]
- Friedman, J. Greedy Function Approximation: A Gradient Boosting Machine. J. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar]
- Pérez, A.; Larrañaga, P.; Inza, I. Supervised classification with conditional Gaussian networks: Increasing the structure complexity from naive Bayes. J. Int. J. Approx. Reason. 2006, 43, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Chapelle, O.; Schölkopf, B. Incorporating invariances in nonlinear Support Vector Machines. In Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, Vancouver, BC, Canada, 3–8 December 2001. [Google Scholar]
- Pérez-Elvira, R.; Oltra-Cucarella, J.; Carrobles, J.A.; Moltó, J.; Flórez, M.; Parra, S.; Agudo, M.; Saez, C.; Guarino, S.; Costea, R.M.; et al. Enhancing the Effects of Neurofeedback Training: The Motivational Value of the Reinforcers. Brain Sci. 2021, 11, 457. [Google Scholar] [CrossRef]
- Pérez-Elvira, R.; Oltra-Cucarella, J.; Carrobles, J.A.; Teodoru, M.; Bacila, C.; Neamtu, B. Individual Alpha Peak Frequency, an Important Biomarker for Live Z-Score Training Neurofeedback in Adolescents with Learning Disabilities. Brain Sci. 2021, 11, 167. [Google Scholar] [CrossRef]
- Kumar, D.; Verma, C.; Singh, P.K.; Raboaca, M.; Felseghi, R.A.; Ghafoor, K.Z. Computational Statistics and Machine Learning Techniques for Effective Decision Making on Student’s Employment for Real-Time. Mathematics 2021, 9, 21–1166. [Google Scholar] [CrossRef]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef] [Green Version]
- Jurman, G.; Riccadonna, S.; Furlanello, C. A Comparison of MCC and CEN Error Measures in Multi-Class Prediction. PLoS ONE 2012, 7, e41882. [Google Scholar] [CrossRef] [Green Version]
Ref. | Tech. | DV | FS Algo. | CV-HP | Multcol. | IoT |
---|---|---|---|---|---|---|
[4] | IoT based 3-Tier Architecture, Wearable Sensors, Apache Hbase, Apache Mahout, LR | Heart Disease | × | × | × | √ |
[5] | Fuzzy Rule based Neural Network, Cloud and IoT based | Diabetes disease | × | × | × | √ |
[14] | T-Test, Fisher Exact Test | SC, Renal Insufficiency | × | × | × | × |
[30] | Code free deep learning model | Gender | × | × | × | × |
[31] | LR, K-NN, ANN, SVM (RBF), SVM (Linear), NB, DT, LOSOCV, Feature Selection | HD (Present/Absent) | Relief, MRMR, LASSO, LLBFS, FCMIM | LOSO | X | X |
[32] | RF, DT, GBM, LR, ANN, NB, SVM (RBF), SVM (Linear), KNN, MCC | Survival Check (Survived/Dead) | RF | Grid Search | × | × |
[33] | Stratified cox proportional Hazard regression model | 4 Age-Group examined with Survival Analysis (time-to-event) | Statistical Analysis | × | × | × |
[42] | COX Regression Model | EF levels (EF 45) with Survival (Time to event) | Statistical Analysis | X | X | X |
[43] | SMOTE, DT, Ada-boost, LR, SGD, RF, GBM, ETC, NB, SVM | Survival Check (Survived/Dead) | RF | × | × | × |
Present | Mann–Whitney U-Test, test, MS-AZURE, Raspberry pi4, Wearable Sensor medical devices, Cox Regression, DT, LR, GBM, GNB, RF, SVM (RBF), KNN, XGB, VIF, MCC, PKI | Survival-Status (Alive/Dead), Age-Group, Gender, SC and SS | RF, XGB | Grid Search | √ | √ |
Continuous Variables | Categorical Variables | |||||
---|---|---|---|---|---|---|
Attribute Name | Description | Range | Measured in | Attribute Name | Description | Range |
Platelets | Platelets in blood | 25,100–85,000 | kiloplatelets/mL | Gender | Woman/man | 0–1 |
Age | Age of Patient | 40–95 | Years | Smoking | Yes/No | 0–1 |
SS | 135.39 | 114–148 | mEq/L | Diabetes | 40 (42%) | 0–1 |
SC | Level of creatinine in the blood | 0.50–9.40 | mg/dL | High BP | Yes/No | 0–1 |
EF | Percentage of leaving the heart at each concentration | 14–80 | Percentage | Anaemia | Decrease in Red Blood Cell/Haemoglobin | 0–1 |
CPK | Level of CPK enzymes in the blood | 23–7861 | Mcg/L | Survival-Status | Died/Alive | 0–1 |
Time | Follow up Month | 4–285 | Days |
Towards Gender | Towards Age | |||
---|---|---|---|---|
Features | VIF Score | VIF Score (Backward Elimination) | VIF Score | VIF Score (Backward Elimination) |
Age | 30.12 | Removed | 30.40 | Removed |
Anaemia | 1.90 | 1.79 | 1.91 | 1.79 |
CPK | 1.45 | 1.40 | 1.46 | 1.42 |
Diabetes | 1.78 | 1.75 | 1.79 | 1.75 |
EF | 13.09 | 7.78 | 13.35 | 7.91 |
High BP | 1.63 | 1.57 | 1.65 | 1.57 |
Platelets | 8.49 | 7.02 | 8.64 | 7.02 |
SC | 3.13 | 3.03 | 3.13 | 3.05 |
SS | 58.37 | Removed | 61.55 | Removed |
Smoking | 1.55 | 1.47 | 3.81 | 3.29 |
Time | 5.65 | 4.02 | 1.89 | 1.89 |
Survival-Status | 2.46 | 1.94 | 5.66 | 4.16 |
2.47 | 1.97 |
Classifier | Model Tuning Parameters |
---|---|
RF | criterion = ’gini’, max_features = 7, min_samples_leaf = 2, min_samples_split= 2, n_estimators=50 |
DT | criterion = ’gini’, max_depth = 50, max_features = ’log2’, min_samples_leaf = 1, min_samples_split = 50 |
SVM | C = 10, gamma = 0.001, kernel = ’rbf’ |
GBM | learning_rate = 0.001, max_depth = 3, n_estimators = 1000, subsample = 0.5 |
XGB | Gamma = 0, learning_rate = 0.1, max_delta_step = 2, max_depth = 6, min_child_weight = 4, n_estimators = 200, reg_alpha = 0, reg_lambda = 8 |
k-NN | metric = ’manhattan’, n_neighbors = 3, weights = ’uniform’ |
LR | C = 1.0, penalty = ’l2’, solver = ’newton–cg’ |
Hardware | Description |
---|---|
HeartGuideBP8000m | Omron Wearable smartwatch for BP monitoring |
PC100-Platelet Counter | Point of Care Platelet/Thrombocyte Counting |
Freestyle Libre Flash Glucose Monitoring System | Wearable Sensor, ASIN: B08M1CMWZW |
Raspberry Pi4 | 1.5 Ghz quad core 64 bit ARM cortex A-72CPU |
Personal Computer/Laptop | Intel® coreTM i3 processor |
Nova StatSensor Creatinine | Portable, Biosensor Blood Creatinine Analyzer/Miniaturized |
Model | Description | Reference |
---|---|---|
DT | DT is an algorithm of classification which works well on categorical and numerical forms of data. It is generally used to build tree-like structures. Medical data can be analysed easily with good accuracy. | [54] |
RF | RF is a model of tree-based ensemble learning that produces exact prediction by combining several weak learners. This model uses the bagging technique for training a range of decision tree with different bootstrap samples | [43] |
k-NN | When compared to a collection of known data, the k-NN method allows us to identify unknown data by calculating the distance or similarity of an unknown datum. It assigns a class to the datum based on the number of neighbors with the same class who are the nearest to it. k controls or indicates the number of neighbors used in the decision. | [46] |
LR | LR typically predictive analysis based on the concept of probability. Binary categorical variable is predicted by one or more independent variable using sigmoid function | [55] |
XGB | The XGB is a popular ensemble learning algorithm that uses DT models in the background for computation. It is a highly effective scalable machine learning algorithm. It combines multiple weak-learner to build a strong classifier proved a better classifier. | [56] |
GBM | Many weak classifiers work together to build a powerful model for learning on the GBM. It usually time taking process due to creation of many independent tree. It has ability to deal with missing values | [57] |
GNB | GNB is a naive bayes variant that works with gaussian distributions and is used for continuous data. The prior and posterior likelihood of the class in the data are involved in conjunction with a function that has constant values. All of the features are often assumed to obey a gaussian or regular distribution | [58] |
SVM | SVM is a mathematical model-based supervised learning technique. It is used to solve problems including regression and classification problems. It classifies data by creating high-dimensional hyperplanes, also known as decision planes. Hyper planes are used to separate one form of data from another | [59] |
Parameter | Distribution Normal | Homogeneity in Variance | Rank | U | Sig. 2-Tailed (p) |
---|---|---|---|---|---|
SC | × | × | 0:128.10 | 5298.00 | 0.00 * |
1:196.31 | |||||
SS | × | √ | 0:162.40 | 7226.50 | 0.00 * |
1:123.78 |
Variable & Assumptions | Anemic Levels | Diabetic Levels | BP Levels | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | Distribution Normal | Homogeneity in Variance | Rank | U | p | Rank | U | p | Rank | U | p |
SC | × | √ | 0:151.22 | 10,758 | 0.779 | 0:149.86 | 10,850.0 | 0.973 | 0:155.67 | 9085 | 0.122 |
1:148.40 | 1:150.20 | 1:139.52 | |||||||||
SS | × | √ | 0:145.40 | 10183.5 | 0.289 | 0:154.03 | 10,173.5 | 0.339 | 0:148.78 | 9948.50 | 0.739 |
1:156.06 | 1:144.38 | 1:152.25 |
Gender | Non-Smoker | Smoker | Row Marginals (Row Sum) |
---|---|---|---|
Female | 101 | 4 | 105 |
Male | 102 | 92 | 194 |
Column Marginals (Columns Sum) | 203 | 96 | 299 |
Gender | Non-Smoker | Smoker | df | p | |
---|---|---|---|---|---|
Female | 71.30 (12.37) | 33.7 (26.17) | 1 | 59.45 | 0.00 * |
Residual | 29.7 | −29.7 | |||
Male | 131.70 (6.70) | 62.3 (14.16) | |||
Residual | −29.7 | 29.7 |
Case Processing Summary | ||||
---|---|---|---|---|
Age_Group | Total Patients | No. of Deaths | Censored | |
N | Percent | |||
Adult | 129 | 31 | 98 | 76.0% |
Very Old | 170 | 65 | 105 | 61.8% |
Overall | 299 | 96 | 203 | 67.9% |
Variable | Coefficient | HR | p |
---|---|---|---|
Anemia | 0.497 | 1.644 | 0.022 * |
CPK | 0.000 | 1.0 | 0.020 * |
Diabetes | 0.946 | 0.800 | |
EF | 0.955 | 0.000 * | |
high_BP | 0.490 | 1.632 | 0.023 * |
Platelets | 0.000 | 1.0 | 0.972 |
Gender | −0.134 | 0.875 | 0.590 |
smoking | 0.058 | 1.059 | 0.818 |
Age-Group | 0.551 | 0.008 * |
Classifier | MCC | F1-Score | Accuracy | Recall (TPR) | Precision | TNR |
---|---|---|---|---|---|---|
MCC Ranking: | ||||||
RF | +0.87 ± 0.25 | 0.95 ± 0.09 | 0.94 ± 0.11 | 0.95 ± 0.11 | 0.95 ± 0.08 | 0.91 ± 0.14 |
GBM | +0.31 ± 0.19 | 0.71 ± 0.06 | 0.65 ± 0.08 | 0.64 ± 0.08 | 0.79 ± 0.09 | 0.68 ± 0.17 |
LR | +0.25 ± 0.14 | 0.75 ± 0.04 | 0.67 ± 0.05 | 0.78 ± 0.08 | 0.73 ± 0.05 | 0.45 ± 0.14 |
Linear SVM | +0.24 ± 0.13 | 0.75 ± 0.04 | 0.66 ± 0.05 | 0.78 ± 0.07 | 0.72 ± 0.05 | 0.45 ± 0.13 |
DT | +0.22 ± 0.20 | 0.72 ± 0.06 | 0.64 ± 0.07 | 0.72 ± 0.13 | 0.73 ± 0.08 | 0.50 ± 0.24 |
XGB | +0.21 ± 0.18 | 0.74 ± 0.06 | 0.65 ± 0.08 | 0.76 ± 0.09 | 0.72 ± 0.04 | 0.45 ± 0.10 |
K-NN | +0.12 ± 0.11 | 0.73 ± 0.04 | 0.62 ± 0.05 | 0.80 ± 0.08 | 0.68 ± 0.04 | 0.30 ± 0.11 |
GNB | +0.06 ± 0.16 | 0.71 ± 0.05 | 0.59 ± 0.06 | 0.76 ± 0.09 | 0.66 ± 0.04 | 0.29 ± 0.12 |
F1-Score Ranking: | ||||||
RF | +0.87 ± 0.25 | 0.95 ± 0.09 | 0.94 ± 0.11 | 0.95 ± 0.11 | 0.95 ± 0.08 | 0.91 ± 0.14 |
LR | +0.25 ± 0.14 | 0.75 ± 0.04 | 0.67 ± 0.05 | 0.78 ± 0.08 | 0.73 ± 0.05 | 0.45 ± 0.14 |
SVM | +0.24 ± 0.13 | 0.75 ± 0.04 | 0.66 ± 0.05 | 0.78 ± 0.07 | 0.72 ± 0.05 | 0.45 ± 0.13 |
XGB | +0.21 ± 0.18 | 0.74 ± 0.06 | 0.65 ± 0.08 | 0.76 ± 0.09 | 0.72 ± 0.04 | 0.45 ± 0.10 |
k-NN | +0.12 ± 0.11 | 0.73 ± 0.04 | 0.62 ± 0.05 | 0.80 ± 0.08 | 0.68 ± 0.04 | 0.30 ± 0.11 |
DT | +0.22 ± 0.20 | 0.72 ± 0.06 | 0.64 ± 0.07 | 0.72 ± 0.13 | 0.73 ± 0.08 | 0.50 ± 0.24 |
GBM | +0.31 ± 0.19 | 0.71 ± 0.06 | 0.65 ± 0.08 | 0.64 ± 0.08 | 0.79 ± 0.09 | 0.68 ± 0.17 |
GNB | +0.06 ± 0.16 | 0.71 ± 0.05 | 0.59 ± 0.06 | 0.76 ± 0.09 | 0.66 ± 0.04 | 0.29 ± 0.12 |
Accuracy Ranking: | ||||||
RF | +0.87 ± 0.25 | 0.95 ± 0.09 | 0.94 ± 0.11 | 0.95 ± 0.11 | 0.95 ± 0.08 | 0.91 ± 0.14 |
LR | +0.25 ± 0.14 | 0.75 ± 0.04 | 0.67 ± 0.05 | 0.78 ± 0.08 | 0.73 ± 0.05 | 0.45 ± 0.14 |
SVM | +0.24 ± 0.13 | 0.75 ± 0.04 | 0.66 ± 0.05 | 0.78 ± 0.07 | 0.72 ± 0.05 | 0.45 ± 0.13 |
XGB | +0.21 ± 0.18 | 0.74 ± 0.06 | 0.65 ± 0.08 | 0.76 ± 0.09 | 0.72 ± 0.04 | 0.45 ± 0.10 |
GBM | +0.31 ± 0.19 | 0.71 ± 0.06 | 0.65 ± 0.08 | 0.64 ± 0.08 | 0.79 ± 0.09 | 0.68 ± 0.17 |
DT | +0.22 ± 0.20 | 0.72 ± 0.06 | 0.64 ± 0.07 | 0.72 ± 0.13 | 0.73 ± 0.08 | 0.50 ± 0.24 |
k-NN | +0.12 ± 0.11 | 0.73 ± 0.04 | 0.62 ± 0.05 | 0.80 ± 0.08 | 0.68 ± 0.04 | 0.30 ± 0.11 |
GNB | +0.06 ± 0.16 | 0.71 ± 0.05 | 0.59 ± 0.06 | 0.76 ± 0.09 | 0.66 ± 0.04 | 0.29 ± 0.12 |
Model | GBM | k-NN | RF | DT | LR | GNB | XGB | SVM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Predicted | |||||||||||||||||
Actual | Gender | M | W | M | W | M | W | M | W | M | W | M | W | M | W | M | W |
M | 125 | 69 | 155 | 39 | 185 | 9 | 139 | 55 | 152 | 42 | 147 | 47 | 147 | 47 | 152 | 42 | |
W | 34 | 71 | 32 | 73 | 9 | 96 | 52 | 53 | 57 | 48 | 74 | 31 | 58 | 47 | 58 | 47 |
Classifier | MCC | F1-Score | Accuracy | Recall | ||
---|---|---|---|---|---|---|
(TPR) | Precision | TNR | ||||
MCC Ranking: | ||||||
RF | +0.92 ± 0.23 | 0.96 ± 0.09 | 0.96 ± 0.11 | 0.97 ± 0.07 | 0.95 ± 0.10 | 0.95 ± 0.16 |
GBM | +0.25 ± 0.14 | 0.73 ± 0.05 | 0.64 ± 0.05 | 0.86 ± 0.10 | 0.64 ± 0.04 | 0.35 ± 0.13 |
DT | +0.23 ± 0.11 | 0.68 ± 0.07 | 0.62 ± 0.05 | 0.69 ± 0.14 | 0.66 ± 0.06 | 0.53 ± 0.17 |
XGB | +0.23 ± 0.15 | 0.67 ± 0.07 | 0.59 ± 0.07 | 0.64 ± 0.10 | 0.68 ± 0.06 | 0.56 ± 0.11 |
LR | +0.16 ± 0.13 | 0.69 ± 0.03 | 0.58 ± 0.05 | 0.77 ± 0.05 | 0.62 ± 0.06 | 0.37 ± 0.15 |
SVM | 0.12 ± 0.14 | 0.67 ± 0.05 | 0.58 ± 0.06 | 0.73 ± 0.09 | 0.61 ± 0.06 | 0.38 ± 0.14 |
k-NN | +0.09 ± 0.11 | 0.62 ± 0.08 | 0.56 ± 0.05 | 0.63 ± 0.14 | 0.61 ± 0.05 | 0.46 ± 0.14 |
GNB | 0.02 ± 0.17 | 0.68 ± 0.03 | 0.55 ± 0.05 | 0.85 ± 0.07 | 0.57 ± 0.05 | 0.17 ± 0.15 |
F1-Score Ranking: | ||||||
RF | +0.92 ± 0.23 | 0.96 ± 0.09 | 0.96 ± 0.11 | 0.97 ± 0.07 | 0.95 ± 0.10 | 0.95 ± 0.16 |
GBM | +0.25 ± 0.14 | 0.73 ± 0.05 | 0.64 ± 0.05 | 0.86 ± 0.10 | 0.64 ± 0.04 | 0.35 ± 0.13 |
LR | +0.16 ± 0.13 | 0.69 ± 0.03 | 0.58 ± 0.05 | 0.77 ± 0.05 | 0.62 ± 0.06 | 0.37 ± 0.15 |
GNB | 0.02 ± 0.17 | 0.68 ± 0.03 | 0.55 ± 0.05 | 0.85 ± 0.07 | 0.57 ± 0.05 | 0.17 ± 0.15 |
DT | +0.23 ± 0.11 | 0.68 ± 0.07 | 0.62 ± 0.05 | 0.69 ± 0.14 | 0.66 ± 0.06 | 0.53 ± 0.17 |
SVM | 0.12 ± 0.14 | 0.67 ± 0.05 | 0.58 ± 0.06 | 0.73 ± 0.09 | 0.61 ± 0.06 | 0.38 ± 0.14 |
XGB | +0.23 ± 0.15 | 0.67 ± 0.07 | 0.59 ± 0.07 | 0.64 ± 0.10 | 0.68 ± 0.06 | 0.56 ± 0.11 |
K-NN | +0.09 ± 0.11 | 0.62 ± 0.08 | 0.56 ± 0.05 | 0.63 ± 0.14 | 0.61 ± 0.05 | 0.46 ± 0.14 |
Accuracy Ranking: | ||||||
RF | +0.92 ± 0.23 | 0.96 ± 0.09 | 0.96 ± 0.11 | 0.97 ± 0.07 | 0.95 ± 0.10 | 0.95 ± 0.16 |
GBM | +0.25 ± 0.14 | 0.73 ± 0.05 | 0.64 ± 0.05 | 0.86 ± 0.10 | 0.64 ± 0.04 | 0.35 ± 0.13 |
DT | +0.23 ± 0.11 | 0.68 ± 0.07 | 0.62 ± 0.05 | 0.69 ± 0.14 | 0.66 ± 0.06 | 0.53 ± 0.17 |
XGB | +0.23 ± 0.15 | 0.67 ± 0.07 | 0.59 ± 0.07 | 0.64 ± 0.10 | 0.68 ± 0.06 | 0.56 ± 0.11 |
LR | +0.16 ± 0.13 | 0.69 ± 0.03 | 0.58 ± 0.05 | 0.77 ± 0.05 | 0.62 ± 0.06 | 0.37 ± 0.15 |
SVM | 0.12 ± 0.14 | 0.67 ± 0.05 | 0.58 ± 0.06 | 0.73 ± 0.09 | 0.61 ± 0.06 | 0.38 ± 0.14 |
k-NN | +0.09 ± 0.11 | 0.62 ± 0.08 | 0.56 ± 0.05 | 0.63 ± 0.14 | 0.61 ± 0.05 | 0.46 ± 0.14 |
GNB | 0.02 ± 0.17 | 0.68 ± 0.03 | 0.55 ± 0.05 | 0.85 ± 0.07 | 0.57 ± 0.05 | 0.17 ± 0.15 |
Model | GBM | k-NN | RF | DT | LR | GNB | XGB | SVM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Predicted | |||||||||||||||||
Actual | Age Group | A | VO | A | VO | A | VO | A | VO | A | VO | A | VO | A | VO | A | VO |
A | 45 | 84 | 59 | 70 | 122 | 7 | 69 | 60 | 46 | 83 | 22 | 107 | 72 | 57 | 49 | 80 | |
VO | 23 | 147 | 62 | 108 | 5 | 165 | 52 | 118 | 39 | 131 | 26 | 144 | 55 | 115 | 45 | 125 |
Classifier | MCC | F1-Score | Accuracy | Recall (TPR) | Precision | TNR |
---|---|---|---|---|---|---|
MCC Ranking: | ||||||
RF | +0.91 ± 0.11 | 0.94 ± 0.07 | 0.96 ± 0.05 | 0.93 ± 0.08 | 0.95 ± 0.08 | 0.97 ± 0.05 |
DT | +0.63 ± 0.11 | 0.75 ± 0.07 | 0.83 ± 0.05 | 0.80 ± 0.10 | 0.71 ± 0.09 | 0.85 ± 0.06 |
XGB | +0.63 ± 0.12 | 0.74 ± 0.10 | 0.84 ± 0.05 | 0.72 ± 0.17 | 0.77 ± 0.10 | 0.90 ± 0.05 |
LR | +0.59 ± 0.10 | 0.71 ± 0.08 | 0.82 ± 0.04 | 0.66 ± 0.11 | 0.77 ± 0.09 | 0.91 ± 0.04 |
GBM | +0.59 ± 0.14 | 0.72 ± 0.10 | 0.83 ± 0.05 | 0.69 ± 0.15 | 0.75 ± 0.12 | 0.89 ± 0.06 |
GNB | +0.53 ± 0.17 | 0.64 ± 0.15 | 0.81 ± 0.06 | 0.54 ± 0.17 | 0.79 ± 0.14 | 0.93 ± 0.05 |
SVM | +0.13 ± 0.14 | 0.21 ± 0.11 | 0.68 ± 0.03 | 0.13 ± 0.08 | 0.52 ± 0.24 | 0.94 ± 0.03 |
k-NN | +0.06 ± 0.16 | 0.33 ± 0.12 | 0.61 ± 0.06 | 0.30 ± 0.12 | 0.37 ± 0.14 | 0.77 ± 0.07 |
F1-Score Ranking: | ||||||
RF | +0.91 ± 0.11 | 0.94 ± 0.07 | 0.96 ± 0.05 | 0.93 ± 0.08 | 0.95 ± 0.08 | 0.97 ± 0.05 |
DT | +0.63 ± 0.11 | 0.75 ± 0.07 | 0.83 ± 0.05 | 0.80 ± 0.10 | 0.71 ± 0.09 | 0.85 ± 0.06 |
XGB | +0.63 ± 0.12 | 0.74 ± 0.10 | 0.84 ± 0.05 | 0.72 ± 0.17 | 0.77 ± 0.10 | 0.90 ± 0.05 |
GBM | +0.59 ± 0.14 | 0.72 ± 0.10 | 0.83 ± 0.05 | 0.69 ± 0.15 | 0.75 ± 0.12 | 0.89 ± 0.06 |
LR | +0.59 ± 0.10 | 0.71 ± 0.08 | 0.82 ± 0.04 | 0.66 ± 0.11 | 0.77 ± 0.09 | 0.91 ± 0.04 |
GNB | +0.53 ± 0.17 | 0.64 ± 0.15 | 0.81 ± 0.06 | 0.54 ± 0.17 | 0.79 ± 0.14 | 0.93 ± 0.05 |
k-NN | +0.06 ± 0.16 | 0.33 ± 0.12 | 0.61 ± 0.06 | 0.30 ± 0.12 | 0.37 ± 0.14 | 0.77 ± 0.07 |
SVM | +0.13 ± 0.14 | 0.21 ± 0.11 | 0.68 ± 0.03 | 0.13 ± 0.08 | 0.52 ± 0.24 | 0.94 ± 0.03 |
Accuracy Ranking: | ||||||
RF | +0.91 ± 0.11 | 0.94 ± 0.07 | 0.96 ± 0.05 | 0.93 ± 0.08 | 0.95 ± 0.08 | 0.97 ± 0.05 |
XGB | +0.63 ± 0.12 | 0.74 ± 0.10 | 0.84 ± 0.05 | 0.72 ± 0.17 | 0.77 ± 0.10 | 0.90 ± 0.05 |
DT | +0.63 ± 0.11 | 0.75 ± 0.07 | 0.83 ± 0.05 | 0.80 ± 0.10 | 0.71 ± 0.09 | 0.85 ± 0.06 |
GBM | +0.59 ± 0.14 | 0.72 ± 0.10 | 0.83 ± 0.05 | 0.69 ± 0.15 | 0.75 ± 0.12 | 0.89 ± 0.06 |
LR | +0.59 ± 0.10 | 0.71 ± 0.08 | 0.82 ± 0.04 | 0.66 ± 0.11 | 0.77 ± 0.09 | 0.91 ± 0.04 |
GNB | +0.53 ± 0.17 | 0.64 ± 0.15 | 0.81 ± 0.06 | 0.54 ± 0.17 | 0.79 ± 0.14 | 0.93 ± 0.05 |
SVM | +0.13 ± 0.14 | 0.21 ± 0.11 | 0.68 ± 0.03 | 0.13 ± 0.08 | 0.52 ± 0.24 | 0.94 ± 0.03 |
k-NN | +0.06 ± 0.16 | 0.33 ± 0.12 | 0.61 ± 0.06 | 0.30 ± 0.12 | 0.37 ± 0.14 | 0.77 ± 0.07 |
Model | GBM | k-NN | RF | DT | LR | GNB | XGB | SVM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Predicted | |||||||||||||||||
Actual | Survival-Status | D | AL | D | AL | D | AL | D | AL | D | AL | D | AL | D | AL | D | AL |
D | 66 | 30 | 29 | 67 | 89 | 7 | 77 | 19 | 63 | 33 | 52 | 44 | 69 | 27 | 54 | 42 | |
AL | 22 | 181 | 49 | 154 | 5 | 198 | 31 | 172 | 20 | 183 | 14 | 189 | 21 | 182 | 13 | 190 |
CDF-DI (Extant Research) | Davide Chicco et al. [32] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Model | Accuracy | F1-Score | MCC | Sen. | Spec. | Existing Accuracy | Existing F1-Score | Existing MCC | Sen. | Spec. | Extant Accuracy |
RF | 0.96 | 0.94 | 0.91 | 0.93 | 0.97 | 0.74 | 0.55 | 0.38 | 0.49 | 0.86 | 0.22 ↑ |
DT | 0.83 | 0.75 | 0.63 | 0.80 | 0.97 | 0.74 | 0.55 | 0.38 | 0.53 | 0.83 | 0.09 ↑ |
GBM | 0.83 | 0.72 | 0.59 | 0.69 | 0.89 | 0.74 | 0.53 | 0.37 | 0.48 | 0.86 | 0.09 ↑ |
LR | 0.82 | 0.71 | 0.59 | 0.66 | 0.91 | 0.73 | 0.47 | 0.33 | 0.39 | 0.89 | 0.09 ↑ |
GNB | 0.81 | 0.64 | 0.53 | 0.54 | 0.93 | 0.70 | 0.36 | 0.22 | 0.28 | 0.90 | 0.11 ↑ |
SVM | 0.68 | 0.21 | 0.13 | 0.13 | 0.94 | 0.69 | 0.18 | 0.16 | 0.12 | 0.97 | ↓ |
k-NN | 0.61 | 0.33 | 0.06 | 0.30 | 0.77 | 0.62 | 0.15 | 0.12 | 0.87 | ↓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, D.; Verma, C.; Dahiya, S.; Singh, P.K.; Raboaca, M.S.; Illés, Z.; Bakariya, B. Cardiac Diagnostic Feature and Demographic Identification (CDF-DI): An IoT Enabled Healthcare Framework Using Machine Learning. Sensors 2021, 21, 6584. https://doi.org/10.3390/s21196584
Kumar D, Verma C, Dahiya S, Singh PK, Raboaca MS, Illés Z, Bakariya B. Cardiac Diagnostic Feature and Demographic Identification (CDF-DI): An IoT Enabled Healthcare Framework Using Machine Learning. Sensors. 2021; 21(19):6584. https://doi.org/10.3390/s21196584
Chicago/Turabian StyleKumar, Deepak, Chaman Verma, Sanjay Dahiya, Pradeep Kumar Singh, Maria Simona Raboaca, Zoltán Illés, and Brijesh Bakariya. 2021. "Cardiac Diagnostic Feature and Demographic Identification (CDF-DI): An IoT Enabled Healthcare Framework Using Machine Learning" Sensors 21, no. 19: 6584. https://doi.org/10.3390/s21196584
APA StyleKumar, D., Verma, C., Dahiya, S., Singh, P. K., Raboaca, M. S., Illés, Z., & Bakariya, B. (2021). Cardiac Diagnostic Feature and Demographic Identification (CDF-DI): An IoT Enabled Healthcare Framework Using Machine Learning. Sensors, 21(19), 6584. https://doi.org/10.3390/s21196584