Software-Defined Networking Solutions, Architecture and Controllers for the Industrial Internet of Things: A Review
Abstract
:1. Introduction
2. Fundamental Aspects of Communication Networks in the IIoT
3. Use of SDN in IIoT
3.1. Improvements in Communication Network IIoT through SDN
3.2. Integration of SDN into Other Technologies
4. Considerations for the Implementation of a Comprehensive SDN Solution for IIoT
4.1. Aspects to Consider in the Implementation of a Comprehensive SDN Solution for IIoT
4.2. Simulation and Implementation on SDN-Based IIoT Networks
4.3. Architecture and SDN Controllers for IIoT
SDN Controllers for the IIoT
- Performance: the performance that a SDN controller may offer is key. In large networks, a controller needs to manage a high number of requests. Therefore, it should be able to do so efficiently to avoid introducing unnecessary delays in the network. The reliability and consistency of the controller could also be considered in its performance assessment.
- Scalability: it is important that networks are scalable in IIoT in general. Therefore, it is desirable that the SDN controller enables the high scalability demanded by a possible massive addition of final systems.
- Load Balancing: when several SDN controllers are used in the network, some of them may be more saturated than others, which could cause delays, package loss, and/or jitter.
- Legacy Network Support: this characteristic is related to one of the three implementation models for the SDN control plane, specifically the hybrid one. In this case, the SDN controller used should be compatible with the traditional network commutators.
- Documentation: this characteristic can be relevant to understanding the operation of a controller and knowing the functions, possibilities, and resources it offers for the development of new SDN applications.
- Modularity: it may be useful for the reutilization of the components of a controller.
- Southbound Interface Support: refers to the versions supported by OpenFlow, as well as to other protocols that broaden the possibilities of the controller.
- Platform: refers to the operational systems in which the controller can be used.
- Virtualization: the options with which the controller can be virtualized, and the possible management of Open vSwitch on the SDN data plane.
- Maturity: the years of maturity of the controller.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Malik, P.K.; Sharma, R.; Singh, R.; Gehlot, A.; Satapathy, S.C.; Alnumay, W.S.; Pelusi, D.; Ghosh, U.; Nayak, J. Industrial Internet of Things and Its Applications in Industry 4.0: State of The Art. Comput. Commun. 2021, 166, 125–139. [Google Scholar] [CrossRef]
- Pivoto, D.G.S.; de Almeida, L.F.F.; da Rosa Righi, R.; Rodrigues, J.J.P.C.; Lugli, A.B.; Alberti, A.M. Cyber-Physical Systems Architectures for Industrial Internet of Things Applications in Industry 4.0: A Literature Review. J. Manuf. Syst. 2021, 58, 176–192. [Google Scholar] [CrossRef]
- Younan, M.; Houssein, E.H.; Elhoseny, M.; Ali, A.A. Challenges and Recommended Technologies for the Industrial Internet of Things: A Comprehensive Review. Measurement 2020, 151, 107198. [Google Scholar] [CrossRef]
- Khan, W.Z.; Rehman, M.H.; Zangoti, H.M.; Afzal, M.K.; Armi, N.; Salah, K. Industrial Internet of Things: Recent Advances, Enabling Technologies and Open Challenges. Comput. Electr. Eng. 2020, 81, 106522. [Google Scholar] [CrossRef]
- Priyadarsini, M.; Bera, P. Software Defined Networking Architecture, Traffic Management, Security, and Placement: A Survey. Comput. Netw. 2021, 192, 108047. [Google Scholar] [CrossRef]
- Haji, S.H.; Zeebaree, S.R.M.; Saeed, R.H.; Ameen, S.Y.; Shukur, H.M.; Omar, N.; Sadeeq, M.A.M.; Ageed, Z.S.; Ibrahim, I.M.; Yasin, H.M. Comparison of Software Defined Networking with Traditional Networking. Asian J. Res. Comput. Sci. 2021, 1–18. [Google Scholar] [CrossRef]
- Naeem, F.; Tariq, M.; Poor, H.V. SDN-Enabled Energy-Efficient Routing Optimization Framework for Industrial Internet of Things. IEEE Trans. Ind. Inform. 2021, 17, 5660–5667. [Google Scholar] [CrossRef]
- Babbar, H.; Rani, S.; Singh, A.; Abd-Elnaby, M.; Choi, B.J. Cloud Based Smart City Services for Industrial Internet of Things in Software-Defined Networking. Sustainability 2021, 13, 8910. [Google Scholar] [CrossRef]
- Njah, Y.; Cheriet, M. Parallel Route Optimization and Service Assurance in Energy-Efficient Software-Defined Industrial IoT Networks. IEEE Access 2021, 9, 24682–24696. [Google Scholar] [CrossRef]
- Okwuibe, J.; Haavisto, J.; Kovacevic, I.; Harjula, E.; Ahmad, I.; Islam, J.; Ylianttila, M. SDN-Enabled Resource Orchestration for Industrial IoT in Collaborative Edge-Cloud Networks. IEEE Access 2021, 9, 115839–115854. [Google Scholar] [CrossRef]
- Okwuibe, J.; Haavisto, J.; Harjula, E.; Ahmad, I.; Ylianttila, M. SDN Enhanced Resource Orchestration of Containerized Edge Applications for Industrial IoT. IEEE Access 2020, 8, 229117–229131. [Google Scholar] [CrossRef]
- Pääkkönen, R. Cloud-Based Remote Control of Autonomous Mobile Robots in Industrial Environments. Master’s Thesis, Master’s Programme in Automation and Electrical Engineering. School of Electrical Engineering, Aalto University, Espoo, Finland, 2020. [Google Scholar]
- Malik, A.; Aziz, B.; Adda, M.; Ke, C.H. Smart routing: Towards proactive fault handling of software-defined networks. Comput. Netw. 2020, 170, 107104. [Google Scholar] [CrossRef] [Green Version]
- Isong, B.; Molose, R.R.S.; Abu-Mahfouz, A.M.; Dladlu, N. Comprehensive Review of SDN Controller Placement Strategies. IEEE Access 2020, 8, 170070–170092. [Google Scholar] [CrossRef]
- Czachórski, T.; Gelenbe, E.; Kuaban, G.S.; Marek, D. Time-Dependent Performance of a Multi-Hop Software Defined Network. Appl. Sci. 2021, 11, 2469. [Google Scholar] [CrossRef]
- Abuarqoub, A. A Review of the Control Plane Scalability Approaches in Software Defined Networking. Future Internet 2020, 12, 49. [Google Scholar] [CrossRef] [Green Version]
- Baddeley, M. Software Defined Networking for the Industrial Internet of Things. Ph.D. Thesis, University of Bristol, Bristol, UK, 2020. [Google Scholar]
- Molina, E.; Jacob, E. Software-Defined Networking in Cyber-Physical Systems: A Survey. Comput. Electr. Eng. 2018, 66, 407–419. [Google Scholar] [CrossRef]
- Josbert, N.N.; Ping, W.; Wei, M.; Rafiq, A. Solution for Industrial Networks: Resilience-Based SDN Technology. In Proceedings of the 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Nanchang, China, 26–28 March 2021; pp. 392–400. [Google Scholar]
- Chen, J.; Ye, Q.; Quan, W.; Yan, S.; Do, P.T.; Yang, P.; Zhuang, W.; Shen, X.; Li, X.; Rao, J. SDATP: An SDN-Based Traffic-Adaptive and Service-Oriented Transmission Protocol. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 756–770. [Google Scholar] [CrossRef]
- Kiadehi, K.B.; Rahmani, A.M.; Molahosseini, A.S. Increasing Fault Tolerance of Data Plane on the Internet of Things Using the Software-Defined Networks. PeerJ Comput. Sci. 2021, 7, e543. [Google Scholar] [CrossRef]
- Madhawa, S.; Balakrishnan, P.; Arumugam, U. Employing Invariants for Anomaly Detection in Software Defined Networking Based Industrial Internet of Things. J. Intell. Fuzzy Syst. 2018, 35, 1267–1279. [Google Scholar] [CrossRef]
- Herrera, J.L.; Bellavista, P.; Foschini, L.; Galán-Jiménez, J.; Murillo, J.M.; Berrocal, J. Meeting Stringent QoS Requirements in IIoT-Based Scenarios. In Proceedings of the GLOBECOM 2020-2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar]
- Xu, H.; Yu, W.; Griffith, D.; Golmie, N. A Survey on Industrial Internet of Things: A Cyber-Physical Systems Perspective. IEEE Access 2018, 6, 78238–78259. [Google Scholar] [CrossRef]
- Radanliev, P.; De Roure, D.; Nicolescu, R.; Huth, M. A reference architecture for integrating the Industrial Internet of Things in the Industry 4.0. Univ. Oxf. 2019. [Google Scholar] [CrossRef]
- Chen, B.; Wan, J.; Shu, L.; Li, P.; Mukherjee, M.; Yin, B. Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges. IEEE Access 2018, 6, 6505–6519. [Google Scholar] [CrossRef]
- Mendiola, A.; Astorga, J.; Jacob, E.; Stamos, K. Enhancing network resources utilization and resiliency in multi-domain bandwidth on demand service provisioning using SDN. Telecommun. Syst. 2019, 3, 505–515. [Google Scholar] [CrossRef]
- Bizanis, N.; Kuipers, F.A. SDN and Virtualization Solutions for the Internet of Things: A Survey. IEEE Access 2016, 4, 5591–5606. [Google Scholar] [CrossRef]
- Wan, J.; Tang, S.; Shu, Z.; Li, D.; Wang, S.; Imram, M.; Vasilakos, A. Software-Defined Industrial Internet of Things in the Context of Industry 4.0. IEEE Sens. J. 2016, 16, 7373–7380. [Google Scholar] [CrossRef]
- Al-Rubaye, S.; Kadhum, E.; Ni, Q.; Anpalagan, A. Industrial Internet of Things Driven by SDN Platform for Smart Grid Resiliency. IEEE Internet Things J. 2019, 6, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, D.; Wan, J.; Liu, C.; Imran, M. Adaptive Transmission Optimization in SDN-Based Industrial Internet of Things With Edge Computing. IEEE Internet Things J. 2018, 5, 1351–1360. [Google Scholar] [CrossRef]
- Silva, L.; Gonçalves, P.; Marau, R.; Pedreiras, P. Extending OpenFlow with industrial grade communication services. In Proceedings of the 2017 IEEE 13th International Workshop on Factory Communication Systems (WFCS), Trondheim, Norway, 31 May–2 June 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Wei, M.; Li, C.; Li, C. An IPv6 Internet Accessing Architecture and Approach for Industrial Wireless Network. In Proceedings of the 2020 14th International Conference on Ubiquitous Information Management and Communication (IMCOM), Taichung, Taiwan, 3–5 January 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Hosni, I. Distributed scheduling with efficient collision detection for end-to-end delay optimization in 6TiSCH multi-hop wireless networks. Ann. Telecommun. 2019, 74, 239–255. [Google Scholar] [CrossRef]
- Vilajosana, X.; Watteyne, T.; Vučinić, M.; Chang, T.; Pister, J.K.S. 6TiSCH: Industrial Performance for IPv6 Internet-of-Things Networks. Proc. IEEE. 2019, 107, 1153–1165. [Google Scholar] [CrossRef]
- Cena, G.; Scanzio, S.; Valenzano, A.; Zunino, C. A Full-Wireless Network Architecture Based on the Industrial Internet of Things Paradigm. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, 10–13 September 2019; pp. 1301–1304. [Google Scholar] [CrossRef]
- Karrenbauer, M.; Ludwing, S.; Buhr, H.; Klessig, H. Future industrial networking: From use cases to wireless technologies to a flexible system architecture. at-Automatisierungstechnik 2019, 67, 526–544. [Google Scholar] [CrossRef] [Green Version]
- Moutinho, L.; Pedreiras, P.; Almeida, L. A Real-Time Software Defined Networking Framework for Next-Generation Industrial Networks. IEEE Access 2019, 7, 164468–164479. [Google Scholar] [CrossRef]
- Sasiain, J.; Sanz, A.; Astorga, J.; Jacob, E. Towards Flexible Integration of 5G and IIoT Technologies in Industry 4.0: A Practical Use Case. Appl. Sci. 2020, 10, 7670. [Google Scholar] [CrossRef]
- Tsuchiya, A.; Fraile, F.; Koshijima, I.; Ortiz, A.; Poler, R. Software Defined Networking Firewall for Industry 4.0 Manufacturing Systems. J. Ind. Eng. Manag. JIEM 2018, 11, 318–332. [Google Scholar] [CrossRef] [Green Version]
- Ehrlich, M.; Krummacker, D.; Fischer, C.; Guillaume, R.; Perez, S.; Frimpong, A.; Meer, H.; Wollschlaeger, M.; Schotten, H.; Jasperneite, H. Software-Defined Networking as an Enabler for Future Industrial Network Management. In Proceedings of the 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Turin, Italy, 4–7 September 2018; Volume 1, pp. 1109–1112. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, M. Application of SDN for secure communication in IoT environment. Comput. Commun. 2020, 151, 60–65. [Google Scholar] [CrossRef]
- Vishwakarma, R.; Jain, A.K. A survey of DDoS attacking techniques and defence mechanisms in the IoT network. Telecommun. Syst. 2020, 73, 3–25. [Google Scholar] [CrossRef]
- Pascoal, T.A.; Fonseca, I.E.; Nigam, V. Slow denial-of-service attacks on software defined networks. Comput. Netw. 2020, 173, 107223. [Google Scholar] [CrossRef]
- Shakil, M.; Mohammed, A.F.Y.; Arul, R.; Bashir, A.K.; Choi, J.K. A novel dynamic framework to detect DDoS in SDN using metaheuristic clustering. Trans. Emerg. Telecommun. Technol. 2019, e3622. [Google Scholar] [CrossRef]
- Singh, M.P.; Bhandari, A. New-flow based DDoS attacks in SDN: Taxonomy, rationales, and research challenges. Comput. Commun. 2020, 154, 509–527. [Google Scholar] [CrossRef]
- Ojo, M.; Adami, D.; Giordano, S. A SDN-IoT Architecture with NFV Implementation. In Proceedings of the 2016 IEEE Globecom Workshops (GC Wkshps), Washington, DC, USA, 4–8 December 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Xu, S.; Wang, X.; Yang, G.; Ren, J.; Wang, S. Routing optimization for cloud services in SDN-based Internet of Things with TCAM capacity constraint. J. Commun. Netw. 2020, 22, 145–158. [Google Scholar] [CrossRef]
- Kitsuwan, N.; Oki, E.; Kurimoto, T.; Urushidani, S. Single tag scheme for segment routing in software-defined network. Telecommun. Syst. 2020, 74, 173–184. [Google Scholar] [CrossRef]
- Hu, P. A System Architecture for Software-Defined Industrial Internet of Things. In Proceedings of the 2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Montreal, QC, Canada, 4–7 October 2015; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, K.; Blech, J.O.; Gregory, M.A.; Schmidt, H. Software Defined Networking for Communication and Control of Cyber-Physical Systems. In Proceedings of the 2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS), Melbourne, VIC, Australia, 14–17 December 2015; pp. 803–808. [Google Scholar] [CrossRef]
- Reddy, V.A.; Venkatesh, K.; Srinivas, L.N.B. Software Defined Networking Based Delay Sensitive Traffic Engineering of Critical Data in Internet of Things. 2020. Available online: https://www.ingentaconnect.com/content/asp/jctn/2020/00000017/00000001/art00010 (accessed on 5 July 2021).
- Thubert, P.; Palattella, M.R.; Engel, T. 6TiSCH centralized scheduling: When SDN meet IoT. In Proceedings of the 2015 IEEE Conference on Standards for Communications and Networking (CSCN), Tokyo, Japan, 28–30 October 2015; pp. 42–47. [Google Scholar] [CrossRef] [Green Version]
- Liang, G.; Li, W. A novel industrial control architecture based on Software-Defined Network. Meas. Control. 2018, 51, 360–367. [Google Scholar] [CrossRef]
- Duan, X.; Liu, Y.; Wang, X. SDN Enabled 5G-VANET: Adaptive Vehicle Clustering and Beamformed Transmission for Aggregated Traffic. IEEE Commun. Mag. 2017, 55, 120–127. [Google Scholar] [CrossRef]
- Quan, W.; Cheng, N.; Qin, M.; Zhang, H.; Chan, H.A.; Shen, X. Adaptive Transmission Control for Software Defined Vehicular Networks. IEEE Wirel. Commun. Lett. 2019, 8, 653–656. [Google Scholar] [CrossRef]
- Chen, J.L.; Kao, S.P. QoS mechanism for virtualized wireless networks with software-defined networking. Int. J. Commun. Syst. 2015, 28, 1741–1752. Available online: http://onlinelibrary.wiley.com/doi/abs/10.1002/dac.2775 (accessed on 5 July 2021). [CrossRef]
- Kim, H.S.; Yun, S.; Kim, H.; Shin, H.; Kim, W.T. An Efficient SDN Multicast Architecture for Dynamic Industrial IoT Environments. Mob. Inf. Syst. 2018, 8482467. [Google Scholar] [CrossRef] [Green Version]
- Mazur, D.; Paszkiewicz, A.; Bolanowski, M.; Budzik, G.; Oleksy, M. Analysis of possible SDN use in the rapid prototyping processas part of the Industry 4.0. Bull. Pol. Acad. Sci. Tech. Sci. 2019, 67, 1. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-612428f2-115d-4798-9c3d-f7c09b1e2670 (accessed on 5 July 2021).
- Ahmed, K.; Blech, J.O.; Gregory, M.A.; Schmidt, H.W. Software Defined Networks in Industrial Automation. J. Sens. Actuator Netw. 2018, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Romero-Gázquez, J.L.; Bueno-Delgado, M.V. Software Architecture Solution Based on SDN for an Industrial IoT Scenario. Wirel. Commun. Mob. Comput. 2018, 2946575. [Google Scholar] [CrossRef]
- Xu, F.; Ye, H.; Cui, S.; Zhao, C.; Yao, H. Software Defined Industrial Network: Architecture and Edge Offloading Strategy. Commun. Netw. 2019, 46–56. [Google Scholar] [CrossRef]
- Leonardi, L.; Ashjaei, M.; Fotouhi, H.; Bello, L.L. A Proposal Towards Software-Defined Management of Heterogeneous Virtualized Industrial Networks. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 22–25 July 2019; Volume 1, pp. 1741–1746. [Google Scholar] [CrossRef]
- Azzouz, L.B.; Jamai, I. SDN, slicing, and NFV paradigms for a smart home: A comprehensive survey. Trans. Emerg. Telecommun. Technol. 2019, 30, e3744. [Google Scholar] [CrossRef]
- Sakic, E.; Kulkarni, V.; Theodorou, V.; Matsiuk, A.; Kuenzer, S.; Petroulakis, N.E.; Fysarakis, K. “VirtuWind—An SDN- and NFV-Based Architecture for Softwarized Industrial Networks. Meas. Model. Eval. Comput. Syst. Cham. 2018, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Askoxylakis, I.; Petroulakis, N.; Kulkami, V.; Zeiger, F. VirtuWind—Security in a Virtual and Programmable Industrial Network Prototype Deployed in an Operational Wind Park. ERCIM News 2016, 106, 35–36. [Google Scholar]
- Luo, S.; Wang, H.; Wu, J.; Li, J.; Guo, L.; Pei, B. Improving Energy Efficiency in Industrial Wireless Sensor Networks Using SDN and NFV. In Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 15–18 May 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Petroulakis, N.E.; Fysarakis, K.; Askoxylakis, I.; Spanoudakis, G. Reactive security for SDN/NFV-enabled industrial networks leveraging service function chaining. Trans. Emer. Telecomm. Tech. 2018, 29, 7. [Google Scholar] [CrossRef] [Green Version]
- Kiran, N.; Pan, C.; Wang, S.; Yin, C. Joint resource allocation and computation offloading in mobile edge computing for SDN based wireless networks. J. Commun. Netw. 2020, 22, 1–11. [Google Scholar] [CrossRef]
- Muthanna, A.; Ateya, A.A.; Khakimov, A.; Gudkova, I.; Abuarqoub, A.; Samouylov, K.; Koucheryavy, A. Secure and Reliable IoT Networks Using Fog Computing with Software-Defined Networking and Blockchain. J. Sens. Actuator Netw. 2019, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Paul, U.; Liu, J.; Troia, S.; Falowo, O.; Maier, G. Traffic-profile and machine learning based regional data center design and operation for 5G network. J. Commun. Netw. 2019, 21, 569–583. [Google Scholar] [CrossRef]
- Hu, F. Network Innovation through OpenFlow and SDN: Principles and Design; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Killi, B.P.R.; Rao, S.V. Controller placement in software defined networks: A Comprehensive survey. Comput. Netw. 2019, 163, 106883. [Google Scholar] [CrossRef]
- Singh, A.K.; Maurya, S.; Kumar, N.; Srivastava, S. Heuristic approaches for the reliable SDN controller placement problem. Trans. Emerg. Telecommun. Technol. 2020, 31, e3761. [Google Scholar] [CrossRef]
- Alenazi, M.J.F.; Çetinkaya, E.K. Resilient placement of SDN controllers exploiting disjoint paths. Trans. Emerg. Telecommun. Technol. 2020, 31, e3725. [Google Scholar] [CrossRef]
- Santos, D.; De Sousa, A.; Mas-Machuca, C. The controller placement problem for robust SDNs against malicious node attacks considering the control plane with and without split-brain. Ann. Telecommun. 2019, 74, 575–591. [Google Scholar] [CrossRef]
- Abdellatif, S.; Berthou, P.; Villemur, T.; Simo, F. Management of industrial communications slices: Towards the Application Driven Networking concept. Comput. Commun. 2020, 155, 104–116. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Denker, G.; Giannelli, C.; Bellavista, P.; Venkatasubramanian, N. A Software Defined Networking architecture for the Internet-of-Things. In Proceedings of the 2014 IEEE Network Operations and Management Symposium (NOMS), Krakow, Poland, 5–9 May 2014; pp. 1–9. [Google Scholar] [CrossRef] [Green Version]
- Salman, O.; Elhajj, I.H.; Kayssi, A.; Chehab, A. A review on machine learning–based approaches for Internet traffic classification. Ann. Telecommun. 2020, 75, 673–710. [Google Scholar] [CrossRef]
- Song, L.; Chai, K.K.; Chen, Y.; Schormans, J.; Loo, J.; Vinel, A. QoS-Aware Energy-Efficient Cooperative Scheme for Cluster-Based IoT Systems. IEEE Syst. J. 2017, 11, 1447–1455. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, J.; Xu, F.; Yin, M.; Zhang, W. When Software Defined Networks Meet Fault Tolerance: A Survey. Algorithms Archit. Parallel Process. 2015, 351–368. [Google Scholar] [CrossRef]
- Wen, Z.; Liu, X.; Xu, Y.; Zou, J. A RESTful framework for Internet of things based on software defined network in modern manufacturing. Int. J. Adv. Manuf. Technol. 2016, 84, 361–369. [Google Scholar] [CrossRef]
- Babbar, H.; Rani, S. Software-Defined Networking Framework Securing Internet of Things. In Integration of WSN and IoT for Smart Cities; Rani, S., Maheswar, R., Kanagachidambaresan, G.R., Jayarajan, P., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–14. [Google Scholar]
- Kang, H.; Yoon, C.; Shin, S. Astraea: Towards an effective and usable application permission system for SDN. Comput. Netw. 2019, 155, 1–14. [Google Scholar] [CrossRef]
- Aliyu, A.L.; Aneiba, A.; Patwary, M.; Bull, P. A Trust Management Framework for Software Defined Network (SDN) Controller and Network Applications. Comput. Netw. 2020, 107421. [Google Scholar] [CrossRef]
- Anithaashri, T.P.; Ravichandran, G.; Baskaran, R. Security enhancement for software defined network using game theoretical approach. Comput. Netw. 2019, 157, 112–121. [Google Scholar] [CrossRef]
- Babiceanu, R.F.; Seker, R. Cyber resilience protection for industrial internet of things: A software-defined networking approach. Comput. Ind. 2019, 104, 47–58. [Google Scholar] [CrossRef]
- Bi, Y.; Han, C.; Lin, G.; Peng, Y.; Pu, H.; Jia, Y. Intelligent Quality of Service Aware Traffic Forwarding for Software-Defined Networking/Open Shortest Path First Hybrid Industrial Internet. IEEE Trans. Ind. Inform. 2020, 16, 1395–1405. [Google Scholar] [CrossRef]
- Mininet: An Instant Virtual Network on Your Laptop (or Other PC)—Mininet. Available online: http://mininet.org/ (accessed on 13 September 2021).
- Ravi, N.; Shalinie, S.M. Learning-Driven Detection and Mitigation of DDoS Attack in IoT via SDN-Cloud Architecture. IEEE Internet Things J. 2020, 7, 3559–3570. [Google Scholar] [CrossRef]
- Chekired, D.A.; Khoukhi, L.; Mouftah, H.T. Decentralized Cloud-SDN Architecture in Smart Grid: A Dynamic Pricing Model. IEEE Trans. Ind. Inform. 2018, 14, 1220–1231. [Google Scholar] [CrossRef]
- Yazdinejad, A.; Parizi, R.M.; Dehghantanha, A.; Zhang, Q.; Choo, K.K.R. An Energy-Efficient SDN Controller Architecture for IoT Networks with Blockchain-Based Security. IEEE Trans. Serv. Comput. 2020, 13, 625–638. [Google Scholar] [CrossRef]
- Das, R.K.; Ahmed, N.; Pohrmen, F.H.; Maji, A.K.; Saha, G. 6LE-SDN: An Edge-Based Software-Defined Network for Internet of Things. IEEE Internet Things J. 2020, 7, 7725–7733. [Google Scholar] [CrossRef]
- Sato, T.; Shao, C.; Nicho, J.; Yoshikane, N.; Okamoto, S.; Yamanaka, N.; Razo, M.; Tacca, M.; Fumagalli, A. Remote Control Experiments of an Industrial Robot Using Two Distributed Robot Controllers. Net-Centric. 2017. Available online: http://biblio.yamanaka.ics.keio.ac.jp/file/MPLS2016_extended_summaries_draft_final.pdf (accessed on 30 July 2021).
- Ahmad, S.; Mir, A.H. Scalability, Consistency, Reliability and Security in SDN Controllers: A Survey of Diverse SDN Controllers. J. Netw. Syst. Manag. 2020, 29, 1. [Google Scholar] [CrossRef]
- Khondoker, R.; Zaalouk, A.; Marx, R.; Bayarou, K. Feature-Based Comparison and Selection of Software Defined Networking (SDN) Controllers. In Proceedings of the 2014 World Congress on Computer Applications and Information Systems (WCCAIS), Hammamet, Tunisia, 17–19 January 2014; pp. 1–7. [Google Scholar] [CrossRef]
- AlShehri, M.A.R.; Mishra, S. Feature Based Comparison and Selection of SDN Controller. Int. J. Innov. Technol. Manag. 2019, 16, 1950029. [Google Scholar] [CrossRef]
Application Scenarios | Improved Variables | Other Technologies Used | Validation |
---|---|---|---|
IIoT [31] | Average delay, throughput, and goodput. | Edge computing | State machine mechanism in MatLab. Metric comparisons with traditional network mechanisms. |
Vehicle networks based on 5G [55] | Latency, trunk link throughput, and Bit Error Rate (BER). | - | MatLab simulations. |
Vehicle networks defined by software [56] | Average throughput in the network. | - | NS-3 simulations. |
Virtualized Wireless networks [57] | QoS, packet loss, and delay. | - | Real scenario with several hosts and FTP and video streaming servers connected to switches and OpenFlow access points. |
Contributions | Advantages | Disadvantages | Use |
---|---|---|---|
Plugins IIoT (Plugin IoTDM) [61] | Standard interface for several user applications. Possibility of developing new plugins to connect different technologies for industrial scenarios. | Dependence of main plugin, IoTDM, and therefore of the OpenDaylight controller. | Management and storage of data generated by IIoT devices according to the M2M standard. |
Cluster Head [31] | Adoption of network policies according to the traffic behavior in each subsystem. | Possibility of affecting flows due to the general requirements of the sub-system. | Establishment of small subsystems with different requirements through the communication nodes of each cluster. |
Edge Computer Server [31] | Reduces the traffic load in the network to the cloud. Contributes to improve response time for time-sensitive services. | Does not substitute cloud servers, the solution is more complex and can be more expensive. | Allocation of computer resources in a sensible way. |
Distributed Network Control [90,91,92] | More efficient and rapid control of the different network segments Absence of a single fault-point for an entire industrial network | More complexity in the solution due to the management of several local controllers. | Decentralized management and control of different network segments. |
Implementation of the Control Plane | Advantages | Disadvantages |
---|---|---|
Centralized |
|
|
Distributed |
|
|
Hybrid |
|
|
Controller | Type of Control Plane | Performance | |||
---|---|---|---|---|---|
Scalability | Consistency | Reliability | Security | ||
Ryu | Centralized | Medium | Low | High | Low |
Iris | Centralized | Medium | Medium | High | Low |
OpenDaylight | Distributed | High | High | High | High |
ONOS | Distributed | High | High | High | High |
Fibbing | Hybrid | High | High | High | Low |
SDNp | Hybrid | High | High | High | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urrea, C.; Benítez, D. Software-Defined Networking Solutions, Architecture and Controllers for the Industrial Internet of Things: A Review. Sensors 2021, 21, 6585. https://doi.org/10.3390/s21196585
Urrea C, Benítez D. Software-Defined Networking Solutions, Architecture and Controllers for the Industrial Internet of Things: A Review. Sensors. 2021; 21(19):6585. https://doi.org/10.3390/s21196585
Chicago/Turabian StyleUrrea, Claudio, and David Benítez. 2021. "Software-Defined Networking Solutions, Architecture and Controllers for the Industrial Internet of Things: A Review" Sensors 21, no. 19: 6585. https://doi.org/10.3390/s21196585
APA StyleUrrea, C., & Benítez, D. (2021). Software-Defined Networking Solutions, Architecture and Controllers for the Industrial Internet of Things: A Review. Sensors, 21(19), 6585. https://doi.org/10.3390/s21196585