Joint Fiber Nonlinear Noise Estimation, OSNR Estimation and Modulation Format Identification Based on Asynchronous Complex Histograms and Deep Learning for Digital Coherent Receivers
Abstract
:1. Introduction
2. Operation Principle
2.1. Asynchronous Complex Histograms
2.2. Asynchronous Complex Histogram MT-ANN
3. System Setup and Results
3.1. System Setup
3.2. Performance Discussion of OPM Based on Different ACHs Parameters
3.3. Discussion of ACH MT-ANN Parameters
3.4. Discussion of Nonlinear Monitoring versus System Parameters
3.5. Results and Discussion of MFI, OSNR and NL Noise Distortion Estimation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roberts, K.; Zhuge, Q.; Monga, I.; Gareau, S.; Laperle, C. Beyond 100 Gb/s: Capacity, Flexibility, and Network Optimization. J. Opt. Commun. Netw. 2017, 9, C12–C24. [Google Scholar] [CrossRef]
- Konyshev, V.A.; Leonov, A.V.; Nanii, O.E.; Novikov, A.G.; Treshchikov, V.N.; Ubaydullaev, R.R. Accumulation of nonlinear noise in coherent communication lines without dispersion compensation. Opt. Commun. 2015, 34, 19–23. [Google Scholar] [CrossRef]
- Vaquero Caballero, F.J.; Lves, D.J.; Laperle, C.; Charlton, D.; Zhuge, Q.; Sullivan, M.O.; Savory, S.J. Machine Learning based Linear and Nonlinear Noise Estimation. J. Opt. Commun. Netw. 2018, 10, D42–D51. [Google Scholar] [CrossRef]
- Shieh, W.; Chen, X. Information Spectral Efficiency and Launch Power Density Limits Due to Fiber Nonlinearity for Coherent Optical OFDM Systems. IEEE Photonics J. 2011, 3, 158–173. [Google Scholar] [CrossRef]
- Dar, R.; Feder, M.; Mecozzi, A.; Shtaif, M. Properties of nonlinear noise in long, dispersion-uncompensated fiber links. Opt. Express 2013, 21, 25685–25699. [Google Scholar] [CrossRef] [PubMed]
- Dou, L.; Yamauchi, T.; Su, X.; Tao, Z.; Oda, S.; Aoki, Y.; Hoshida, T.; Rasmussen, J.C. An accurate nonlinear noise insensitive OSNR monitor. In Proceedings of the Optical Fiber Communications Conference and Exposition, Anaheim, CA, USA, 20–24 March 2016. [Google Scholar]
- Dong, Z.; Lau, A.P.T.; Lu, C. OSNR monitoring for QPSK and 16-QAM systems in presence of fiber nonlinearities for digital coherent receivers. Opt. Express 2012, 20, 19520–19534. [Google Scholar] [CrossRef] [Green Version]
- Khan, F.N.; Lu, C.; Lau, A.P.T. Optical performance monitoring in fiber-optic networks enabled by machine learning techniques. In Proceedings of the Optical Fiber Communications Conference and Exposition, San Diego, CA, USA, 11–15 March 2018. [Google Scholar]
- Musumeci, F.; Rottondi, C.; Nag, A.; Macaluso, I.; Zibar, D.; Ruffini, M.; Tornatore, M. An overview on application of machine learning techniques in optical networks. IEEE Commun. Surv. Tutor. 2019, 21, 1383–1408. [Google Scholar] [CrossRef] [Green Version]
- Thrane, J.; Wass, J.; Piels, M.; Diniz, J.C.; Jones, R.; Zibar, D. Machine learning techniques for optical performance monitoring from directly detected PDM-QAM signals. J. Lightwave Technol. 2017, 35, 868–875. [Google Scholar] [CrossRef] [Green Version]
- Xia, L.; Zhang, J.; Hu, S.; Zhu, M.; Song, Y.; Qiu, K. Transfer learning assisted deep neural network for OSNR estimation. Opt. Express 2019, 27, 19398–19406. [Google Scholar] [CrossRef]
- Tanimura, T.; Hoshida, T.; Kato, T.; Watanabe, S.; Morikawa, H. Convolutional Neural Network-Based Optical Performance Monitoring for Optical Transport Networks. J. Opt. Commun. Netw. 2019, 11, A52–A59. [Google Scholar] [CrossRef]
- Khan, F.N.; Zhong, K.; Zhou, X.; Al-Arashi, W.H.; Yu, C.; Lu, C.; Lau, A.P.T. Joint OSNR monitoring and modulation format identification in digital coherent receivers using deep neural networks. Opt. Express 2017, 25, 17767–17776. [Google Scholar] [CrossRef] [PubMed]
- Guesmi, L.; Ragheb, A.M.; Fathallah, H.; Menif, M. Experimental Demonstration of Simultaneous Modulation Format/Symbol Rate Identification and Optical Performance Monitoring for Coherent Optical Systems. J. Lightwave Technol. 2018, 36, 2230–2239. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, A.; Guo, P.; He, P. OSNR and nonlinear noise power estimation for optical fiber communication systems using LSTM based deep learning technique. Opt. Express 2018, 26, 21346–21357. [Google Scholar] [CrossRef] [PubMed]
- Tax, N.; Verenich, I.; Rosa, M.L.; Dumas, M. Predictive business process monitoring with LSTM neural networks. In Adavanced Information Systems Engineering; Springer; Cham, Switzerland, 2017; pp. 477–492. [Google Scholar]
- Liu, X.; Lun, H.; Fu, M.; Yi, L.; Hu, W.; Zhuge, Q. Machine Learning Based Fiber Nonlinear Noise Monitoring for Subcarrier-multiplexing Systems. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 8–12 March 2020; p. M2J-6. [Google Scholar]
- Zhuge, Q.; Zeng, X.; Lun, H.; Cai, M.; Liu, X.; Yi, L.; Hu, W. Application of Machine Learning in Fiber Nonlinearity Modeling and Monitoring for Elastic Optical Networks. J. Lightwave Technol. 2019, 37, 3055–3063. [Google Scholar] [CrossRef]
- Fan, X.; Xie, Y.; Ren, F.; Zhang, Y.; Huang, X.; Chen, W.; Zhangsun, T.; Wang, J. Joint Optical Performance Monitoring and Modulation Format/Bit-Rate Identification by CNN-Based Multi-Task Learning. IEEE Photonics J. 2018, 10, 1–12. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, M.; Li, J.; Li, Z.; Li, J.; Song, C.; Chen, X. Intelligent constellation diagram analyzer using convolutional neural network-based deep learning. Opt. Express 2017, 25, 17150–17166. [Google Scholar] [CrossRef]
- Wan, Z.; Yu, Z.; Shu, L.; Zhao, Y.; Zhang, H.; Xu, K. Intelligent optical performance monitor using multi-task learning based artificial neural network. Opt. Express 2019, 27, 11281–11291. [Google Scholar] [CrossRef] [Green Version]
- Yi, A.; Yan, L.; Liu, H.; Jiang, L.; Pan, Y.; Luo, B.; Pan, W. Modulation format identification and OSNR monitoring using density distributions in Stokes axes for digital coherent receivers. Opt. Express 2019, 27, 4471–4479. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, J.; Zhang, H.; Jia, Z.; Wang, J.; Cheng, L.; Campos, L.A.; Knittle, C. Multi-stage machine learning enhanced DSP for DP-64QAM coherent optical transmission systems. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 3–7 March 2019. [Google Scholar]
- Xiang, Y.; Tang, M.; Wu, Q.; Zhou, H.; Yong, B.; Fu, S.; Liu, D. A Joint OSNR and Nonlinear Distortions Estimation Method for Optical Fiber Transmission System. IEEE Photonics J. 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, C.; Wang, D.; Chen, X.; Wang, L.; Yang, T.; Du, J. Low-Complexity and Nonlinearity-Tolerant Modulation Format Identification Using Random Forest. IEEE Photonics Technol. Lett. 2019, 31, 853–856. [Google Scholar] [CrossRef]
- Lin, X.; Eldemerdash, Y.A.; Dobre, O.A.; Zhang, S.; Li, C. Modulation Classification Using Received Signal’s Amplitude Distribution for Coherent Receivers. IEEE Photonics Technol. Lett. 2017, 29, 1872–1875. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Dobre, O.A.; Ngatched, T.M.N.; Li, C. A Non-Data-Aided OSNR Estimation Algorithm for Coherent Optical Fiber Communication Systems Employing Multilevel Constellations. J. Lightwave Technol. 2019, 37, 3815–3825. [Google Scholar] [CrossRef]
- Lin, X.; Dobre, O.A.; Ngatched, T.M.N.; Eldemerdash, Y.A.; Li, C. Joint Modulation Classification and OSNR Estimation Enabled by Support Vector Machine. IEEE Photonics Technol. Lett. 2018, 30, 2127–2130. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, W.; Fu, S.; Tang, M.; Liu, D. Transfer learning simplified multi-task deep neural network for PDM-64QAM optical performance monitoring. Opt. Express 2020, 28, 7607–7617. [Google Scholar] [CrossRef]
- Cheng, Y.; Fu, S.; Tang, M.; Liu, D. Multi-task deep neural network (MT-DNN) enabled optical performance monitoring from directly detected PDM-QAM signals. Opt. Express 2019, 27, 19062–19074. [Google Scholar] [CrossRef]
- Khan, F.N.; Fan, Q.; Lu, J.; Zhou, G.; Lu, C.; Lau, A.P.T. Applications of Machine Learning in Optical Communications and Networks. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 8–12 March 2020. [Google Scholar]
- Liu, F.; Lin, Y.; Walsh, A.J.; Yu, Y.; Barry, L.P. Doubly differential star-16-QAM for fast wavelength switching coherent optical packet transceiver. Opt. Express 2018, 26, 8201–8212. [Google Scholar] [CrossRef]
- Wu, J.; Droppo, J.; Deng, L.; Acero, A. A noise-robust ASR front-end using wiener filter constructed from MMSE estimation of clean speech and noise. In Proceedings of the IEEE Workshop on Automatic Speech Recognition and Understanding, St. Thomas, VI, USA, 30 November–4 December 2003; pp. 321–326. [Google Scholar]
- Carena, A.; Bosco, G.; Curri, V.; Jiang, Y.; Poggiolini, P.; Forghieri, F. EGN model of non-linear fiber propagation. Opt. Express 2014, 22, 16335–16362. [Google Scholar] [CrossRef]
Modulation Format: | 16QAM, S-16QAM and 32QAM | |
Signal Bandwidth: | 10 Gbaud | |
Sampling Rate: | 40 GSa/s | |
SSMF | Length: | 80 km |
Loop: | 2–20 | |
Attenuation: | 0.2 × 10−3 dB/m | |
Dispersion: | 16 × 10−6 s/m2 | |
PMD (Polarization mode dispersion) Coefficient: | 0.1 × 10−12/31.62 s/(m1/2) | |
Nonlinear Index: | 2.6 × 10−20 m2/W | |
Waveguide: | 1550 nm | |
Laser Linewidth: | 1 × 105 Hz |
Identified Modulation Format | ||||
---|---|---|---|---|
PDM-S-16QAM | PDM-16QAM | PDM-32QAM | ||
Actual Modulation Format | PDM-S-16QAM | 1908 (100%) | ||
PDM-16QAM | 1928 (100%) | |||
PDM-32QAM | 2164 (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Yang, L.; Luo, F.; Li, B.; Wang, X.; Du, Y.; Liu, D. Joint Fiber Nonlinear Noise Estimation, OSNR Estimation and Modulation Format Identification Based on Asynchronous Complex Histograms and Deep Learning for Digital Coherent Receivers. Sensors 2021, 21, 380. https://doi.org/10.3390/s21020380
Yang S, Yang L, Luo F, Li B, Wang X, Du Y, Liu D. Joint Fiber Nonlinear Noise Estimation, OSNR Estimation and Modulation Format Identification Based on Asynchronous Complex Histograms and Deep Learning for Digital Coherent Receivers. Sensors. 2021; 21(2):380. https://doi.org/10.3390/s21020380
Chicago/Turabian StyleYang, Shuailong, Liu Yang, Fengguang Luo, Bin Li, Xiaobo Wang, Yuting Du, and Deming Liu. 2021. "Joint Fiber Nonlinear Noise Estimation, OSNR Estimation and Modulation Format Identification Based on Asynchronous Complex Histograms and Deep Learning for Digital Coherent Receivers" Sensors 21, no. 2: 380. https://doi.org/10.3390/s21020380
APA StyleYang, S., Yang, L., Luo, F., Li, B., Wang, X., Du, Y., & Liu, D. (2021). Joint Fiber Nonlinear Noise Estimation, OSNR Estimation and Modulation Format Identification Based on Asynchronous Complex Histograms and Deep Learning for Digital Coherent Receivers. Sensors, 21(2), 380. https://doi.org/10.3390/s21020380