Predicting Cyanobacterial Blooms Using Hyperspectral Images in a Regulated River
Abstract
:1. Introduction
2. Materials and Methods
2.1. EFDC-NIER
2.2. Hyperspectral Image Application Method in EFDC-NIER Model
2.3. Study Area and Model Construction
3. Results and Discussion
3.1. Long-Term Water Quality Sensitivity Analysis by Grid Resolution
3.2. Applicability of EFDC-NIER Initial Condition Based on Representative Concentration Value and Grid Resolution
3.3. Hyperspectral Image Applicability in Water Quality Model Initial Field
4. Conclusions
- The sensitivity of the water quality simulation was small for varying initial conditions, boundary conditions, and parameters. In a one-dimensional time series analysis, a multidimensional model is no more accurate than a one-dimensional numerical model, even at a higher grid resolution. While a multidimensional model is necessary when modeling a dead water zone that requires high spatial accuracy, a low-resolution model is deemed sufficient for quick decision-making and conducting a one-dimensional time series analysis. It is critical to select and operate a model that is appropriate for the purpose and circumstances.
- When resampling different grid resolutions between the hyperspectral image and EFDC-NIER model, the dispersion of the results with different CDFs decreased as the EFDC-NIER model grid resolution increased. Case 3 is the most optimal grid resolution, and CDF 50% should be used to reduce the effect of various environmental conditions on the modeling result.
- When using linearly interpolated algae data from the observation points across the monitoring network, the carbon content may be under- or over-applied. The use of hyperspectral images can reduce uncertainties in the modeling results because detailed initial conditions can be applied to the target section.
- As various remote sensing techniques, such as satellite images, are being studied in addition to hyperspectral images, if the Chl-a or algal cell count data can be directly observed and provided, these data can be used in the initial condition of hydrodynamic models using the method presented in this study.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Codon | Habitat * | Tolerances * | Sensitivities * | Typical Representatives * |
---|---|---|---|---|
D | Shallow, enriched turbid waters, including rivers | Flushing | Nutrient depletion | Stephanodiscus spp. and Synedra spp. |
X2 | Shallow, clear mixed layers | Stratification | Mixing and filter feeding | Cryptomonas spp. and Rhodomonas spp. |
P | eutrophic epilimnia | Mild light and C-deficiency | Stratification, Si depletion | Closterium spp. and Fragilaria spp. |
C | Small to medium mixed, eutrophic lakes | Light and C-deficiency | Si exhaustion and stratification | Cyclotella spp., Asterionella spp., and Aulacoseira spp. |
Lo | Summer epilimnia in mesotrophic lakes | Segregated nutrients | Prolonged or deep mixing | Peridinium spp. andMerismopedia spp. |
G | Short, nutrient-rich water columns | High light | Nutrient deficiency | Eudorina spp. and Volvox spp. |
J | Shallow, enriched lakes, ponds, and rivers | - | Settling into low light | Pediastrum spp. and Coelastrum spp. |
M | Dielly mixed layers of small, eutrophic, and low-latitude lakes | High insolation | Flushing and low total light | Microcystis spp. |
H1 | Dinitrogen-fixing and nostocaleans | Low N and low C | Mixing, poor light, and low P | Anabaena spp. and Aphanizomenon spp. |
Group | Species(pgC/cell) |
---|---|
Codon D | Nitzschia spp. (56.2), Skeletonema spp. (127.8), Stephanodiscus spp. (520.5), and Synedra spp. (516.1) |
Codon X2 | Chroomonas spp. (407.5), Cryptomonas spp. (407.5), and Chlamydomonas spp. (446.5) |
Codon P | Aulacoseira spp. (201.3), Fragilaria spp. (68.9), Melosira spp. (705.1), Closteriopsis spp. (130.4), Closterium spp. (143.5), and Staurastrum spp. (13,651.8) |
Codon C | Asterionella spp. (125.2) and Cyclotella spp. (301.5) |
Codon LO | Ceratium spp. (361.8), Gymnodinium spp. (1,303.15), Peridinium spp. (2244.5), and Merismopedia spp. (0.4) |
Codon G | Carteria spp. (27.1), Eudorina spp. (161.6), and Pandorina spp. (204.4) |
Codon J | Actinastrum spp. (9.3), Coelastrum spp. (123.4), Crucigenia spp. (12.9), Golenkinia spp. (54.7), Pediastrum spp. (8.5), Scenedesmus spp. (10.6), Tetraedron spp. (90.4), and Tetrastrum spp. (6.4) |
Codon M | Microcystis spp. (10.95) |
Codon H1 | Anabaena spp. (164.1) and Aphanizomenon spp. (9.5) |
Codon | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Codon M | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 4.2 | 30.1 | 44.2 | 8.3 | 0.2 | 0.0 | 0.0 |
Codon H1 | 0.0 | 0.0 | 0.0 | 0.0 | 4.1 | 1.1 | 3.1 | 1.3 | 3.2 | 1.3 | 0.7 | 0.4 |
Codon P | 12.1 | 17.4 | 15.4 | 8.6 | 26.7 | 68.5 | 39.6 | 23.2 | 27.0 | 7.7 | 36.0 | 1.8 |
Codon D | 59.5 | 71.0 | 70.2 | 41.8 | 16.5 | 2.0 | 3.7 | 1.0 | 5.5 | 9.6 | 8.5 | 53.4 |
Codon G | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 8.4 | 2.2 | 1.5 | 1.2 | 0.0 | 0.0 |
Codon X2 | 16.0 | 8.8 | 9.5 | 46.8 | 49.0 | 14.7 | 18.6 | 23.8 | 28.6 | 45.3 | 33.6 | 35.8 |
Codon J | 0.0 | 0.0 | 0.0 | 1.9 | 1.7 | 0.4 | 0.4 | 4.0 | 15.2 | 0.5 | 0.2 | 0.3 |
Codon LO | 0.0 | 0.2 | 0.2 | 0.3 | 0.6 | 0.4 | 3.2 | 1.2 | 5.0 | 26.8 | 0.9 | 0.3 |
Codon C | 12.4 | 2.6 | 4.7 | 0.6 | 1.3 | 8.7 | 1.3 | 1.3 | 7.2 | 8.6 | 20.1 | 8.0 |
References
- Park, Y.J.; Ruddick, K. Detection of algal blooms in European waters based on satellite chlorophyll data from MERIS and MODIS. Int. J. Remote Sens. 2010, 31, 6567–6583. [Google Scholar] [CrossRef]
- Flynn, K.F.; Chapra, S.C. Remote Sensing of submerged aquatic vegetation in a shallow Non-turbid river using an unmanned aerial vehicle. Korean J. Remote Sens. 2014, 6, 12815–12836. [Google Scholar] [CrossRef] [Green Version]
- Pajares, G. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Am. Soc. Photogramm. Remote Sens. 2015, 81, 281–329. [Google Scholar] [CrossRef] [Green Version]
- Su, T.C.; Chou, H.T. Application of multispectral sensors carried on unmanned aerial vehicle (UAV) to trophic state mapping of small reservoirs: A case study of Tain-Pu reservoir in Kinmen, Taiwan. Remote Sens. 2015, 7, 10078–10097. [Google Scholar] [CrossRef] [Green Version]
- Zaman, B.; Jensen, A.; Clemens, S.R.; McKee, M. Retrieval of spectral reflectance of high resolution multispectral imagery acquired with an autonomous unmanned aerial vehicle. Am. Soc. Photogramm. Remote Sens. 2014, 80, 1139–1150. [Google Scholar]
- Su, T.C. A study of a matching pixel by pixel (MPP) algorithm to establish an empirical model of water quality mapping, as based on unmanned aerial vehicle (UAV) images. Int. J. Appl. Earth Obs. Geoinform. 2017, 58, 213–224. [Google Scholar] [CrossRef]
- Choi, E.; Lee, J.W.; Lee, J.K. Estimation of Chlorophyll-a Concentrations in the Nakdong River Using High-Resolution Satellite Image. Korean J. Remote Sens. 2011, 27, 613–623. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.J.; Jang, H.J.; Kim, Y.S.; Baik, K.H.; Lee, H.S. A Research on the Applicability of Water Quality Analysis using the Hyperspectral Sensor. J. Korean Soc. Environ. Anal. 2014, 17, 113–125. [Google Scholar]
- Kim, H.M.; Jang, S.W.; Yoon, H.J. Utilization of Unmanned Aerial Vehicle (UAV) Image for Detection of Algal Bloom in Nakdong River. J. Kiecs 2017, 12, 457–464. [Google Scholar]
- Lim, J.; Baik, J.; Kim, H.; Chol, M. Estimation of Water Quality using Landsat 8 Images for Geum-river, Korea. J. Korea Water Resour. Assoc. 2015, 48, 79–90. [Google Scholar] [CrossRef]
- Jang, M.W.; Cho, H.K.; Kim, S.M. Analysis of a Spatial Distribution and Nutritional Status of Chlorophyll-a Concentration in the Jinyang Lake Using Landsat 8 Satellite Image. J. Korean Soc. Water Environ. 2018, 35, 1–8. [Google Scholar]
- Zhang, Y.; Liu, M.; Qin, B.; Woerd, H.; Li, J.; Li, Y. Modeling Remote-Sensing Reflectance and Retrieving Chlorophyll-a Concentration in Extremely Turbid Case-2 Waters(Lake Taihu, China). IEEE Trans. Geosci. Remote Sens. 2009, 47, 1937–1948. [Google Scholar] [CrossRef]
- Adam, T. Remote Sensing Models of Algal Blooms and Cyanobacteria in Lake Champlain; University of Massachesetts Amherst: Amherst, MA, USA, 2012; Environmental & Water Resources Engineering Masters Projects. [Google Scholar]
- Hansen, C.; Burian, S.; Dennison, P.; Williams, G. Spatiotemporal Variability of Lake Water Quality in the Context of Remote Sensing Models. Remote Sens. 2017, 9, 409. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, J.; Avouris, D.; Schiller, S.; Luvall, J.; Lekki, J.; Tokars, R.; Anderson, R.; Shuchman, R.; Sayers, M.; Becker, R. Evaluating visible derivative spectroscopy by varimax-rotated, principal component analysis of aerial hyperspectral images from the western basin of Lake Erie. J. Great Lakes Res. 2019, 45, 522–535. [Google Scholar] [CrossRef]
- Sawtell, R.; Anderson, R.; Tokars, R.; Lekki, J.; Shuchman, R.; Bosse, K.; Sayers, M. Real time HABs mapping using NASA Glenn hyperspectral imager. J. Great Lakes Res. 2019, 45, 596–608. [Google Scholar] [CrossRef] [PubMed]
- Woude, A.V.; Ruberg, S.; Johengen, T.; Miller, R.; Stuart, D. Spatial and temporal scales of variability of cyanobacteria harmful algal blooms from NOAA GLERL airborne hyperspectral imagery. J. Great Lakes Res. 2019, 45, 536–546. [Google Scholar] [CrossRef]
- Courault, D.; Seguin, B.; Olioso, A. Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches. Irrig. Drain. Sys. 2005, 19, 223–249. [Google Scholar] [CrossRef]
- Chan, P. Atmospheric turbulence in complex terrain: Verifying numerical model results with observations by remote-sensing instruments. Meteor. Atmos. Phys. 2009, 103, 145–157. [Google Scholar] [CrossRef]
- Liang, S.; Wang, K.; Zhang, X.; Wild, M. Review on Estimation of Land Surface Radiation and Energy Budgets from Ground Measurement, Remote Sensing and Model Simulations. IEEE J. Sel. Top. App. Earth Obs. Remote Sens. 2010, 3, 225–240. [Google Scholar] [CrossRef]
- Li, X.; Huang, M.; Wang, R. Numerical Simulation of Donghu Lake Hydrodynamics and Water Quality Based on Remote Sensing and MIKE 21. Isprs Int. J. Geo-Inf. 2020, i9, 94. [Google Scholar] [CrossRef] [Green Version]
- Kageyama, Y.; Nishida, M. Water Quality Analysis based on Remote Sensing Data and Numerical Model. J. Geo. 2000, 109, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Kouts, T.; Sipelgas, L.; Sabinit, N.; Raudsepp, U. Environmental monitoring of water quality in coastal sea area using remote sensing and modeling. In Proceedings of the 2006 IEEE US/EU Baltic International Symposium, Klaipeda, Lithuania, 23–26 May 2006; pp. 1–8. [Google Scholar]
- Lee, H.; Park, S.; Kang, T.; Kim, K.; Nam, G.; Ha, R.; Shin, H. Hyperspectral Remote Sensing of Algal Distribution Using Inherent Optical Properties; NIER: Incheon, Korea, 2015. [Google Scholar]
- Lee, H.; Park, S.; Kim, K.; Kang, T.; Nam, G.; Ha, R.; Shin, H.; Lee, S.; Lee, J. Hyperspectral Remote Sensing of Algal Distribution Using Inherent Optical Properties (Ⅱ); NIER: Incheon, Korea, 2016. [Google Scholar]
- Lee, H.; Park, S.; Kim, K.; Nam, G.; Ha, R.; Shin, H. Hyperspectral Remote Sensing of Algal Distribution Using Inherent Optical Properties (‘17); NIER: Incheon, Korea, 2017. [Google Scholar]
- Lee, H.; Kang, T.; Park, S.; Lee, M.; Kim, B.; Nam, G.; Ha, R.; Shin, H.; Song, H.; Byun, M. Hyperspectral Remote Sensing of Algal Distribution Using Inherent Optical Properties (‘18); NIER: Incheon, Korea, 2018. [Google Scholar]
- Park, S.; Kang, T.; Lee, S.; Nam, G.; Yoo, J.; Shin, H.; Song, H. A Study on Predicting Water Environment Change Using Hyperspectral Imagery (I)—Focused on Accuracy Evaluation of Algae Remote Sensing Technique by Each River Section; NIER: Incheon, Korea, 2019. [Google Scholar]
- Reynolds, C.S.; Huszar, V.; Kruk, C.; Naselli-Flores, L.; Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 2002, 24, 417–428. [Google Scholar] [CrossRef]
- Padisak, J.; Crossetti, L.O.; Naselli-Flores, L. Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia 2009, 621, 1–19. [Google Scholar] [CrossRef]
EFDC Parameter * | Unit | Definition | Nakdong River | |
---|---|---|---|---|
PMx | Codon M | d | Maximum Growth Rate | 3.0–4.0 |
Codon H1 | 0.2–3.0 | |||
Codon P | 1.3–3.0 | |||
Codon D | 3.0–4.0 | |||
Codon G | 0.8–1.8 | |||
Codon X2 | 1.5–3.5 | |||
Codon J | 1.2–1.5 | |||
Codon LO | 0.2–2.0 | |||
Codon C | 1.0–3.5 | |||
KHNx | Codon M | mg/L | Nitrogen Half-Saturation | 0.03 |
Codon H1 | 0.03 | |||
Codon P | 0.07 | |||
Codon D | 0.07 | |||
Codon G | 0.05 | |||
Codon X2 | 0.05 | |||
Codon J | 0.05 | |||
Codon LO | 0.05 | |||
Codon C | 0.07 | |||
KHPx | Codon M | mg/L | Phosphorus Half-Saturation | 0.01 |
Codon H1 | 0.02 | |||
Codon P | 0.01 | |||
Codon D | 0.01 | |||
Codon G | 0.01 | |||
Codon X2 | 0.01 | |||
Codon J | 0.01 | |||
Codon LO | 0.01 | |||
Codon C | 0.01 | |||
TMX1 | Codon M | °C | Lower Optimal Temperature | 20.0 |
Codon H1 | 10.0 | |||
Codon P | 5.0 | |||
Codon D | 2.0 | |||
Codon G | 20.0 | |||
Codon X2 | 2.0 | |||
Codon J | 18.0 | |||
Codon LO | 10.0 | |||
Codon C | 5.0 | |||
TMX2 | Codon M | °C | Upper Optimal Temperature | 35.0 |
Codon H1 | 35.0 | |||
Codon P | 35.0 | |||
Codon D | 13.0 | |||
Codon G | 35.0 | |||
Codon X2 | 30.0 | |||
Codon J | 32.0 | |||
Codon LO | 30.0 | |||
Codon C | 30.0 | |||
WQRHOMN | Codon M | kg/m3 | Algae Minimum Density | 985 |
Codon H1 | 920 | |||
Codon G | 970 | |||
Codon LO | 920 | |||
WQRHOMX | Codon M | kg/ m3 | Algae Maximum Density | 1,005 |
Codon H1 | 1,030 | |||
Codon G | 1,065 | |||
Codon Lo | 1,030 | |||
WQCOEF1 | Codon M | kg/ m3/min | Density Increase Rate Constant | 0.030 |
Codon H1 | 0.070 | |||
Codon G | 0.045 | |||
Codon Lo | 0.070 | |||
WQCOEF2 | Codon M | kg/ m3/min | Density Decrease Rate Constant | 0.001 |
Codon H1 | 0.001 | |||
Codon G | 0.001 | |||
Codon Lo | 0.001 | |||
WQCOEF3 | Codon M | kg/ m3/min | Density Increase Minimum Rate | 0.013 |
Codon H1 | 0.023 | |||
Codon G | 0.011 | |||
Codon Lo | 0.023 | |||
WQR | Codon M | m | Algae Effective Radius | 0.00008 |
Codon H1 | 0.000005 | |||
Codon G | 0.00025 | |||
Codon Lo | 0.00002 | |||
CChlx | mg C/μg Chl-a | Carbon–Chl-a Ratio for Algae | 0.012 | |
CIa, CIb, Clc | - | Weighting Factor for Solar Radiation at 0 d, 1 d, and 2 d | 0.80, 0.15, and 0.05 | |
BMRx | /d | Basal Metabolism Rate for Algae | 0.05–0.1 | |
PRRx | /d | Predation Rate for Algae | 0.02 | |
CPprm1 | g C/g P | Constant for Algae Phosphorous–Carbon Ratio | 40 | |
CPprm2 | g C/g P | Constant for Algae Phosphorous–Carbon Ratio | 85 | |
CPprm3 | mg/L | Constant for Algae Phosphorous–Carbon Ratio | 200 | |
ANCx | g N/g | Nitrogen–Carbon Ratio for Algae | 0.18 | |
L_Factor1 | W/m2 | Conver Light Unit | 4.57 | |
F_PAR | Temperature and Light Average Time | 0.44 |
Group | Water Level (m) | Water Temperature (°C) | BOD (mg/L) | TN (mg/L) | TP (mg/L) |
---|---|---|---|---|---|
MAE | 0.11 | 0.54 | 0.54 | 0.55 | 0.04 |
RMSE | 0.15 | 0.69 | 0.62 | 0.61 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, J.M.; Kim, B.; Jong, J.; Nam, G.; Park, L.J.; Park, S.; Kang, T.; Lee, J.-K.; Kim, J. Predicting Cyanobacterial Blooms Using Hyperspectral Images in a Regulated River. Sensors 2021, 21, 530. https://doi.org/10.3390/s21020530
Ahn JM, Kim B, Jong J, Nam G, Park LJ, Park S, Kang T, Lee J-K, Kim J. Predicting Cyanobacterial Blooms Using Hyperspectral Images in a Regulated River. Sensors. 2021; 21(2):530. https://doi.org/10.3390/s21020530
Chicago/Turabian StyleAhn, Jung Min, Byungik Kim, Jaehun Jong, Gibeom Nam, Lan Joo Park, Sanghyun Park, Taegu Kang, Jae-Kwan Lee, and Jungwook Kim. 2021. "Predicting Cyanobacterial Blooms Using Hyperspectral Images in a Regulated River" Sensors 21, no. 2: 530. https://doi.org/10.3390/s21020530
APA StyleAhn, J. M., Kim, B., Jong, J., Nam, G., Park, L. J., Park, S., Kang, T., Lee, J. -K., & Kim, J. (2021). Predicting Cyanobacterial Blooms Using Hyperspectral Images in a Regulated River. Sensors, 21(2), 530. https://doi.org/10.3390/s21020530