Achieving a Balanced Knee in Robotic TKA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surgery
2.2. Data and Statistics
3. Results
3.1. Patient Demographics
3.2. Planned Gaps
3.3. Sensor Feedback and Surgical Corrections
3.4. Balance through Range of Motion
3.5. Final Alignment
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirschmann, M.T.; Becker, R.; Tandogan, R.; Vendittoli, P.-A.; Howell, S. Alignment in TKA: What has been clear is not anymore! Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 2037–2039. [Google Scholar] [CrossRef] [Green Version]
- Oussedik, S.; Abdel, M.P.; Victor, J.; Pagnano, M.W.; Haddad, F.S. Alignment in total knee arthroplasty. Bone Jt. J. 2020, 102, 276–279. [Google Scholar] [CrossRef] [PubMed]
- Rivière, C.; Iranpour, F.; Auvinet, E.; Howell, S.; Vendittoli, P.A.; Cobb, J.; Parratte, S. Alignment options for total knee arthroplasty: A systematic review. Orthop. Traumatol. Surg. Res. 2017, 103, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Lonner, J.H. (Ed.) Robotics in Knee and Hip Arthroplasty: Current Concepts, Techniques and Emerging Uses; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Ghirardelli, S.; Bala, A.; Peretti, G.; Antonini, G.; Indelli, P.F. Intraoperative Sensing Technology to Achieve Balance in Primary Total Knee Arthroplasty. JBJS Rev. 2019, 7, e4. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.; Breslauer, L. The Use of Intraoperative Sensors Significantly Increases the Patient-Reported Rate of Improvement in Primary Total Knee Arthroplasty. Orthopedics 2017, 40, e648–e651. [Google Scholar] [CrossRef] [Green Version]
- Geller, J.A.; Lakra, A.; Murtaugh, T. The Use of Electronic Sensor Device to Augment Ligament Balancing Leads to a Lower Rate of Arthrofibrosis After Total Knee Arthroplasty. J. Arthroplast. 2017, 32, 1502–1504. [Google Scholar] [CrossRef]
- Golladay, G.J.; Bradbury, T.L.; Gordon, A.C.; Fernandez-Madrid, I.J.; Krebs, V.E.; Patel, P.D.; Suarez, J.C.; Rueda, C.A.H.; Barsoum, W.K. Are Patients More Satisfied with a Balanced Total Knee Arthroplasty? J. Arthroplast. 2019, 34, S195–S200. [Google Scholar] [CrossRef]
- Kayani, B.; Haddad, F.S. Robotic Total Knee Arthroplasty. Bone Jt. Res. 2019, 8, 438. [Google Scholar] [CrossRef]
- Cho, K.-J.; Seon, J.-K.; Jang, W.-Y.; Park, C.-G.; Song, E.-K. Objective quantification of ligament balancing using VERASENSE in measured resection and modified gap balance total knee arthroplasty. BMC Musculoskelet. Disord. 2018, 19, 266. [Google Scholar] [CrossRef] [Green Version]
- Gustke, K.A.; Golladay, G.J.; Roche, M.W.; Elson, L.C.; Anderson, C.R. A New Method for Defining Balance. J. Arthroplast. 2014, 29, 955–960. [Google Scholar] [CrossRef] [Green Version]
- Losina, E.; Walensky, R.P.; Kessler, C.L.; Emrani, P.S.; Reichmann, W.M.; Wright, E.A.; Holt, H.L.; Solomon, D.H.; Yelin, E.; Paltiel, A.D.; et al. Cost-effectiveness of Total Knee Arthroplasty in the United States: Patient Risk and Hospital Volume. Arch. Intern. Med. 2009, 169, 1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skou, S.T.; Roos, E.M.; Laursen, M.B.; Rathleff, M.S.; Arendt-Nielsen, L.; Simonsen, O.; Rasmussen, S. A Randomized, Controlled Trial of Total Knee Replacement. N. Engl. J. Med. 2015, 373, 1597–1606. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.J.; Lim, H.; Lee, N.R.; Moon, Y.-W. Diagnosis, Causes and Treatments of Instability Following Total Knee Arthroplasty. Knee Surg. Relat. Res. 2014, 26, 61–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalury, D.F.; Pomeroy, D.L.; Gorab, R.S.; Adams, M.J. Why are Total Knee Arthroplasties Being Revised? J. Arthroplast. 2013, 28, 120–121. [Google Scholar] [CrossRef]
- Pietrzak, J.; Common, H.; Migaud, H.; Pasquier, G.; Girard, J.; Putman, S. Have the frequency of and reasons for revision total knee arthroplasty changed since 2000? Comparison of two cohorts from the same hospital: 255 cases (2013–2016) and 68 cases (1991–1998). Orthop. Traumatol. Surg. Res. 2019, 105, 639–645. [Google Scholar] [CrossRef]
- Postler, A.; Lützner, C.; Beyer, F.; Tille, E.; Lützner, J. Analysis of Total Knee Arthroplasty revision causes. BMC Musculoskelet. Disord. 2018, 19, 55. [Google Scholar] [CrossRef] [Green Version]
- Risitano, S.; Karamian, B.; Indelli, P.F. Intraoperative load-sensing drives the level of constraint in primary total knee arthroplasty: Surgical technique and review of the literature. J. Clin. Orthop. Trauma 2017, 8, 265–269. [Google Scholar] [CrossRef]
- Liddle, A.D.; Pandit, H.; Judge, A.; Murray, D.W. Patient-reported outcomes after total and unicompartmental knee arthroplasty: A study of 14 076 matched patients from the National Joint Registry for England and Wales. Bone Jt. J. 2015, 97, 793–801. [Google Scholar] [CrossRef]
- Van Onsem, S.; van der Straeten, C.; Arnout, N.; Deprez, P.; van Damme, G.; Victor, J. A New Prediction Model for Patient Satisfaction After Total Knee Arthroplasty. J. Arthroplast. 2016, 31, 2660–2667.e1. [Google Scholar] [CrossRef]
- Chen, J.Y.; Chin, P.L.; Tay, D.K.J.; Chia, S.-L.; Lo, N.N.; Yeo, S.J. Less outliers in pinless navigation compared with conventional surgery in total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 1827–1832. [Google Scholar] [CrossRef]
- Seon, J.K.; Song, E.K. Navigation-Assisted Less Invasive Total Knee Arthroplasty Compared with Conventional Total Knee Arthroplasty. J. Arthroplast. 2006, 21, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Spencer, J.M.; Chauhan, S.K.; Sloan, K.; Taylor, A.; Beaver, R.J. Computer navigation versus conventional total knee replacement. J. Bone Jt. Surg. 2007, 89, 477–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmallah, R.K.; Mistry, J.B.; Cherian, J.J.; Chughtai, M.; Bhave, A.; Roche, M.W.; Mont, M.A. Can We Really ‘Feel’ a Balanced Total Knee Arthroplasty? J. Arthroplast. 2016, 31, 102–105. [Google Scholar] [CrossRef] [PubMed]
- MacDessi, S.J.; Gharaibeh, M.A.; Harris, I.A. How Accurately Can Soft Tissue Balance Be Determined in Total Knee Arthroplasty? J. Arthroplast. 2019, 34, 290–294.e1. [Google Scholar] [CrossRef] [PubMed]
- Gharaibeh, M.A.; Chen, D.B.; MacDessi, S.J. Soft tissue balancing in total knee arthroplasty using sensor-guided assessment: Is there a learning curve?: Sensor assessment learning curve. ANZ J. Surg. 2018, 88, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Verstraete, M.A.; Meere, P.A.; Salvadore, G.; Victor, J.; Walker, P.S. Contact forces in the tibiofemoral joint from soft tissue tensions: Implications to soft tissue balancing in total knee arthroplasty. J. Biomech. 2017, 58, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Luyckx, T.; Vandenneucker, H.; Scheys, L.; Vereecke, E.; Victor, A.; Victor, J. Raising the Joint Line in TKA is Associated with Mid-flexion Laxity: A Study in Cadaver Knees. Clin. Orthop. 2018, 476, 601–611. [Google Scholar] [CrossRef]
Age [Year] | BMI [kg/m2] | Sex [-] | Pre-Operative Coronal Deformity [°] | |
---|---|---|---|---|
Min | 48.6 | 18.8 | 71.9% Female | 24.0 valgus |
Mean (Standard Deviation) | 70.1 (8.2) | 30.4 (5.4) | 4.7 varus (9.0) | |
Max | 90.5 | 47.2 | 25.0 varus |
Initial Trialing | After Balancing | Mann–Whitney U-Test | |
---|---|---|---|
M10 [lbf] | 25.0 (12.0) | 18.8 (6.4) | p < 0.0001 |
L10 [lbf] | 20.5 (11.1) | 16.1 (7.0) | p = 0.0054 |
M90 [lbf] | 23.0 (12.8) | 17.9 (8.2) | p = 0.0011 |
L90 [lbf] | 23.1 (11.8) | 17.1 (7.2) | p < 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gordon, A. C.; Conditt, M. A.; Verstraete, M. A. Achieving a Balanced Knee in Robotic TKA. Sensors 2021, 21, 535. https://doi.org/10.3390/s21020535
Gordon AC, Conditt MA, Verstraete MA. Achieving a Balanced Knee in Robotic TKA. Sensors. 2021; 21(2):535. https://doi.org/10.3390/s21020535
Chicago/Turabian StyleGordon, Alexander C, Michael A Conditt, and Matthias A Verstraete. 2021. "Achieving a Balanced Knee in Robotic TKA" Sensors 21, no. 2: 535. https://doi.org/10.3390/s21020535
APA StyleGordon, A. C., Conditt, M. A., & Verstraete, M. A. (2021). Achieving a Balanced Knee in Robotic TKA. Sensors, 21(2), 535. https://doi.org/10.3390/s21020535