Theoretical and Numerical Analysis of Active Switching for Narrow-Band Thermal Emission with Graphene Ribbon Metasurface
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Modest, M.F. Radiative Heat Transfer, 3rd ed.; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Sakurai, A.; Yada, K.; Simomura, T.; Ju, S.; Kashiwagi, M.; Okada, H.; Nagao, T.; Tsuda, K.; Shiomi, J. Ultranarrow-Band Wavelength-Selective Thermal Emission with Aperiodic Multilayered Metamaterials Designed by Bayesian Optimization. ACS Cent. Sci. 2019, 5, 319–326. [Google Scholar] [CrossRef]
- Lenert, A.; Bierman, D.; Nam, Y.; Chan, W.; Celanovic, I.; Soljacic, M.; Wang, E. A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 2014, 9, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Rephaeli, E.; Fan, S. Absorber and emitter for solar thermophotovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. Opt. Express 2009, 17, 15145–15159. [Google Scholar] [CrossRef] [PubMed]
- Totani, T.; Sakurai, A.; Kondo, Y. A wavelength control emitter for drying furnace. In Proceedings of the Asian Conference on Thermal Sciences ACTS-P00423, Jeju, Korea, 27–29 March 2017. [Google Scholar]
- Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared Perfect Absorber and Its Application As Plasmonic Sensor. Nano Lett. 2010, 10, 2342–2348. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Khanikaev, A.; Adato, R.; Arju, N.; Yanik, A.; Altug, H.; Shvets, G. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 2012, 11, 69–75. [Google Scholar] [CrossRef]
- Luo, S.; Zhao, J.; Zuo, D.; Wang, X. Perfect narrow band absorber for sensing applications. Opt. Express 2016, 24, 9288–9294. [Google Scholar] [CrossRef]
- Liu, X.; Wang, L.; Zhang, Z. Wideband Tunable Omnidirectional Infrared Absorbers Based on Doped-Silicon Nanowire Arrays. J. Heat Transf.-Trans. ASME 2013, 135, 061602. [Google Scholar] [CrossRef]
- Du, K.; Li, Q.; Zhang, W.; Yang, Y.; Qiu, M. Wavelength and Thermal Distribution Selectable Microbolometers Based on Metamaterial Absorbers. IEEE Photonics J. 2015, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Landy, N.; Bingham, C.; Tyler, T.; Jokerst, N.; Smith, D.; Padilla, W. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B 2009, 79, 125104. [Google Scholar] [CrossRef] [Green Version]
- Miyoshi, Y.; Fukazawa, Y.; Amasaka, Y.; Reckmann, R.; Yokoi, T.; Ishida, K.; Kawahara, K.; Ago, H.; Maki, H. High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer. Nat. Commun. 2018, 9, 1279. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, Z. Phonon-mediated magnetic polaritons in the infrared region. Opt. Express 2011, 19, A126–A135. [Google Scholar] [CrossRef] [PubMed]
- Smaali, R.; Omeis, F.; Moreau, A.; Taliercio, T.; Centeno, E. A universal design to realize a tunable perfect absorber from infrared to microwaves. Sci. Rep. 2016, 6, 32589. [Google Scholar] [CrossRef] [PubMed]
- Matsuno, Y.; Sakurai, A. Electromagnetic resonances of wavelength-selective solar absorbers with film-coupled fishnet gratings. Opt. Commun. 2017, 385, 118–123. [Google Scholar] [CrossRef]
- Geim, A.; Novoselov, K. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Zhu, J.; Liu, Q.; Lin, T.; Zhou, J.; Ye, L.; Cai, Z. Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits. Opt. Express 2015, 23, 32318–32328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, B.; Zhang, Z. Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings. Acs Photonics 2015, 2, 1611–1618. [Google Scholar] [CrossRef]
- Suzuki, H.; Kaneko, T.; Shibuta, Y.; Ohno, M.; Maekawa, Y.; Kato, T. Wafer-scale fabrication and growth dynamics of suspended graphene nanoribbon arrays. Nat. Commun. 2016, 7, 11797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, G. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 2008, 103, 064302. [Google Scholar] [CrossRef] [Green Version]
- Vakil, A.; Engheta, N. Transformation Optics Using Graphene. Science 2011, 332, 1291–1294. [Google Scholar] [CrossRef] [Green Version]
- Khavasi, A. Design of ultra-broadband graphene absorber using circuit theory. J. Opt. Soc. Am. B-Opt. Phys. 2015, 32, 1941–1946. [Google Scholar] [CrossRef]
- Khavasi, A.; Rejaei, B. Analytical Modeling of Graphene Ribbons as Optical Circuit Elements. IEEE J. Quantum Electron. 2014, 50, 397–403. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids II; Academic Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Georgia Tech Nanoscale Thermal Radiation Laboratory. Rigorous Coupled-Wave Analysis (RCWA). Available online: http://zhang-nano.gatech.edu. (accessed on 10 May 2021).
- Nishijima, Y.; Balcytis, A.; Naganuma, S.; Seniutinas, G.; Juodkazis, S. Tailoring metal and insulator contributions in plasmonic perfect absorber metasurfaces. ACS Appl. Nano Mater. 2018, 1, 3557–3564. [Google Scholar] [CrossRef]
- To, N.; Juodkazis, S.; Nishijima, Y. Detailed Experiment-Theory Comparison of Mid-Infrared Metasurface Perfect Absorbers. Micromachines 2020, 11, 409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, H.; Teng, J.; Palacios, T.; Chua, S. Edge plasmons and cut-off behavior of graphene nano-ribbon waveguides. Opt. Commun. 2016, 370, 226–230. [Google Scholar] [CrossRef]
- Chen, D.; Yang, J.; Zhang, J.; Huang, J.; Zhang, Z. Section 1 Tunable broadband terahertz absorbers based on multiple layers of graphene ribbons. Sci. Rep. 2017, 7, 15836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Gauthier, D.J.; Morin, S.; Wu, Q.; Carmichael, H.; Mossberg, T. Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations. Phys. Rev. Lett. 1990, 64, 2499. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Cubukcu, E. Tunable omnidirectional strong light-matter interactions mediated by graphene surface plasmons. Phys. Rev. B 2013, 88, 115439. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Deng, L.; Wang, L.; Yang, M.; Wang, Y. Modulation of Visible and Near-Infrared Surface Plasmon Resonance of Au Nanoparticles Based on Highly Doped Graphene. Plasmonics 2017, 12, 1317–1324. [Google Scholar] [CrossRef]
- Baqir, M.; Choudhury, P.; Fatima, T.; Ibrahim, A.-B. Graphene-over-graphite-based metamaterial structure as optical filter in the visible regime. Optik 2019, 180, 832–839. [Google Scholar] [CrossRef]
- Zeng, L.; Huang, T.; Liu, G.-B.; Zhang, H.-F. A tunable ultra-broadband linear-to-circular polarization converter containing the graphene. Opt. Commun. 2019, 436, 7–13. [Google Scholar] [CrossRef]
Target Wavelength | λt [µm] | 6 | 8 | 10 |
---|---|---|---|---|
Period | Λ [µm] | 2.85 | 4.01 | 5.23 |
Width of graphene ribbon | W [µm] | 0.134 | 0.231 | 0.355 |
Thickness of dielectric | d [µm] | 0.891 | 1.25 | 1.64 |
Relaxation time of graphene | τ [ps] | 0.329 | 0.296 | 0.273 |
Fermi energy of graphene | EF [eV] | 1.64 | 1.48 | 1.37 |
Quality factor | Q | 56.0 | 40.0 | 25.9 |
Mobility of Graphene | µ [m2Vs] | 0.10 | 0.20 | 0.60 | 2.0 | 6.0 |
---|---|---|---|---|---|---|
Target wavelength | λt [µm] | 10 | ||||
Period | Λ [µm] | 5.24 | 5.23 | 5.24 | 5.24 | 5.23 |
Width of graphene ribbon | W [µm] | 0.447 | 0.355 | 0.246 | 0.165 | 0.114 |
Thickness of dielectric | d [µm] | 1.64 | ||||
Relaxation time of graphene | τ [ps] | 0.172 | 0.237 | 0.569 | 1.27 | 2.64 |
Fermi energy of graphene | EF [eV] | 1.72 | 1.37 | 0.948 | 0.635 | 0.440 |
Quality factor | Q | 15.5 | 25.9 | 52.2 | 114 | 220 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yada, K.; Shimojo, T.; Okada, H.; Sakurai, A. Theoretical and Numerical Analysis of Active Switching for Narrow-Band Thermal Emission with Graphene Ribbon Metasurface. Sensors 2021, 21, 6738. https://doi.org/10.3390/s21206738
Yada K, Shimojo T, Okada H, Sakurai A. Theoretical and Numerical Analysis of Active Switching for Narrow-Band Thermal Emission with Graphene Ribbon Metasurface. Sensors. 2021; 21(20):6738. https://doi.org/10.3390/s21206738
Chicago/Turabian StyleYada, Kyohei, Takashi Shimojo, Hideyuki Okada, and Atsushi Sakurai. 2021. "Theoretical and Numerical Analysis of Active Switching for Narrow-Band Thermal Emission with Graphene Ribbon Metasurface" Sensors 21, no. 20: 6738. https://doi.org/10.3390/s21206738
APA StyleYada, K., Shimojo, T., Okada, H., & Sakurai, A. (2021). Theoretical and Numerical Analysis of Active Switching for Narrow-Band Thermal Emission with Graphene Ribbon Metasurface. Sensors, 21(20), 6738. https://doi.org/10.3390/s21206738