Metasurface Source Antenna Gain Improvement Using Simple Side Metal Structure
Abstract
:1. Introduction
2. Design and Analysis of Side Metal Structure for Metasurfaces
2.1. Patch Source with Side Plate Configuration
2.2. Patch Source with Sidewall Configuration
3. Design of Metallic Cross-Type Slot Transmitarray
3.1. Design of Metallic Cross-Type Slot Unit Cell
3.2. Design of Proposed Transmitarray Antenna
4. Experimental Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Holloway, C.L.; Dienstfrey, A.; Kuester, E.F.; O’hara, J.F.; Azad, A.K.; Taylor, A.J. A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials. Metamaterials 2009, 3, 100–112. [Google Scholar] [CrossRef]
- Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; O’Hara, J.; Booth, J.; Smith, D.R. An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials. IEEE Antennas Propag. Mag. 2012, 54, 10–35. [Google Scholar] [CrossRef]
- Minovich, A.E.; Miroshnichenko, A.E.; Bykov, A.Y.; Murzina, T.V.; Neshev, D.N.; Kivshar, Y.S. Functional and nonlinear optical metasurfaces. Laser Photon-Rev. 2015, 9, 195–213. [Google Scholar] [CrossRef]
- Glybovski, S.B.; Tretyakov, S.A.; Belov, P.A.; Kivshar, Y.S.; Simovski, C.R. Metasurfaces: From microwaves to visible. Phys. Rep. 2016, 634, 1–72. [Google Scholar] [CrossRef]
- Chen, L.; Ma, Q.; Luo, S.S.; Ye, F.J.; Cui, H.Y.; Cui, T.J. Touch-Programmable Metasurface for Various Electromagnetic Manipulations and Encryptions. Small 2022, 18, e2203871. [Google Scholar] [CrossRef]
- Gao, X.; Ma, Q.; Gu, Z.; Cui, W.Y.; Liu, C.; Zhang, J.; Cui, T.J. Programmable surface plasmonic neural networks for microwave detection and processing. Nat. Electron. 2023, 6, 319–328. [Google Scholar] [CrossRef]
- Kahrilas, P.J. HAPDAR—An operational phased array radar. Proc. IEEE 1968, 56, 1967–1975. [Google Scholar] [CrossRef]
- Pozar, D. Flat lens antenna concept using aperture coupled microstrip patches. Electron. Lett. 1996, 32, 2109–2111. [Google Scholar] [CrossRef]
- Bagheri, M.O.; Hassani, H.R.; Rahmati, B. Dual-band, dual-polarised metallic slot transmitarray antenna. IET Microw. Antennas Propag. 2016, 11, 402–409. [Google Scholar] [CrossRef]
- Rahmati, B.; Hassani, H.R. Low-Profile Slot Transmitarray Antenna. IEEE Trans. Antennas Propag. 2015, 63, 174–181. [Google Scholar] [CrossRef]
- Ge, Y.; Bird, T.S.; Chen, L.-W. Ultrathin flat microwave transmitarray antenna for dual-polarised operations. Electron. Lett. 2016, 52, 1653–1654. [Google Scholar] [CrossRef]
- Tian, C.; Jiao, Y.-C.; Zhao, G. Circularly Polarized Transmitarray Antenna Using Low-Profile Dual-Linearly Polarized Elements. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 465–468. [Google Scholar] [CrossRef]
- Tuloti, S.H.R.; Rezaei, P.; Hamedani, F.T. High-Efficient Wideband Transmitarray Antenna. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 817–820. [Google Scholar] [CrossRef]
- Luo, Q.; Gao, S.S.; Sobhy, M.; Yang, X.-X. Wideband Transmitarray With Reduced Profile. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 450–453. [Google Scholar] [CrossRef]
- Iyampalam, P.; Ganesan, I. Low profile antenna based on a fractal shaped metasurface for public safety applications. Int. J. RF Microw. Comput. Eng. 2020, 30, e22048. [Google Scholar] [CrossRef]
- Kasahara, Y.; Alu, A.; Wu, M.; Kosaka, K.; Toyao, H.; Hankui, E. Low-Profile Transmitarray Antenna With Single Slot Source and Metasurface in 80-GHz Band. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 521–522. [Google Scholar]
- Park, J.-H.; Lee, J.-G. Low-profile high efficiency transmitarray antenna using optimized phase compensation surface (PCS) and PEC sidewalls. ICT Express 2021, 7, 501–506. [Google Scholar] [CrossRef]
- Lee, C.; Hoang, T.V.; Chi, S.W.; Lee, S.; Lee, J. Low profile quad-beam circularly polarised antenna using transmissive metasurface. IET Microw. Antennas Propag. 2019, 13, 1690–1698. [Google Scholar] [CrossRef]
- Fan, C.; Che, W.; Yang, W.; He, S. A Novel PRAMC-Based Ultralow-Profile Transmitarray Antenna by Using Ray Tracing Principle. IEEE Trans. Antennas Propag. 2017, 65, 1779–1787. [Google Scholar] [CrossRef]
- Lee, J.-G.; Lee, J.-H. Low-Profile High-Efficiency Transmitarray Antenna for Beamforming Applications. Electronics 2023, 12, 3178. [Google Scholar] [CrossRef]
- Reis, J.R.; Vala, M.; Caldeirinha, R.F.S. Review Paper on Transmitarray Antennas. IEEE Access 2019, 7, 94171–94188. [Google Scholar] [CrossRef]
- Ratni, B.; de Lustrac, A.; Piau, G.-P.; Burokur, S.N. Active metasurface for reconfigurable reflectors. Appl. Phys. A 2018, 124, 1–8. [Google Scholar] [CrossRef]
- Yang, J.; Yang, W.; Qu, K.; Zhao, J.; Jiang, T.; Chen, K.; Feng, Y. Active polarization-converting metasurface with electrically controlled magnitude amplification. Opt. Express 2023, 31, 28979–28986. [Google Scholar] [CrossRef]
- Lin, M.; Huang, X.; Deng, B.; Zhang, J.; Guan, D.; Yu, D.; Qin, Y. A High-Efficiency Reconfigurable Element for Dynamic Metasurface Antenna. IEEE Access 2020, 8, 87446–87455. [Google Scholar] [CrossRef]
- Lima, E.B.; Matos, S.A.; Costa, J.R.; Fernandes, C.A.; Fonseca, N.J.G. Circular Polarization Wide-Angle Beam Steering at Ka-Band by In-Plane Translation of a Plate Lens Antenna. IEEE Trans. Antennas Propag. 2015, 63, 5443–5455. [Google Scholar] [CrossRef]
- Yeap, S.B.; Qing, X.; Chen, Z.N. 77-GHz Dual-Layer Transmit-Array for Automotive Radar Applications. IEEE Trans. Antennas Propag. 2015, 63, 2833–2837. [Google Scholar] [CrossRef]
- Jiang, M.; Chen, Z.N.; Zhang, Y.; Hong, W.; Xuan, X. Metamaterial-Based Thin Planar Lens Antenna for Spatial Beamforming and Multibeam Massive MIMO. IEEE Trans. Antennas Propag. 2017, 65, 464–472. [Google Scholar] [CrossRef]
- Dussopt, L.; Moknache, A.; Saily, J.; Lamminen, A.; Kaunisto, M.; Aurinsalo, J.; Bateman, T.; Francey, J. A V-Band Switched-Beam Linearly Polarized Transmit-Array Antenna for Wireless Backhaul Applications. IEEE Trans. Antennas Propag. 2017, 65, 6788–6793. [Google Scholar] [CrossRef]
- Lee, J.; Kwon, T.; Lee, J.; Lee, J.; Kwon, T.; Lee, J. Beam pattern reconfigurable circularly polarized transmitarray antenna by rearrangement of sources. Microw. Opt. Technol. Lett. 2019, 61, 999–1003. [Google Scholar] [CrossRef]
- Beccaria, M.; Massaccesi, A.; Pirinoli, P.; Manh, L.H. Multibeam Transmitarrays for 5G Antenna Systems. In Proceedings of the 2018 IEEE Seventh International Conference on Communications and Electronics (ICCE), Hue, Vietnam, 18–20 July 2018; pp. 217–221. [Google Scholar]
- Yeo, J.; Lee, J.-I. Gain Enhancement of Microstrip Patch Array Antennas Using Two Metallic Plates for 24 GHz Radar Applications. Electronics 2023, 12, 1512. [Google Scholar] [CrossRef]
- Li, R.; Li, P.; Rocca, P.; Sánchez, A.S.; Song, L.; Li, X.; Xu, W.; Fan, Z. Design of Wideband High-Gain Patch Antenna Array for High-Temperature Applications. Sensors 2023, 23, 3821. [Google Scholar] [CrossRef]
- Lin, J.-F.; Zhu, L. Bandwidth and Gain Enhancement of Patch Antenna Based on Coupling Analysis of Characteristic Modes. IEEE Trans. Antennas Propag. 2020, 68, 7275–7286. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Hlayer | 8.83 mm |
Hcell | 27.39 mm |
Lcell | 20 mm |
Lslot | 15.5~17.8 mm |
W | 2 mm |
Copper plate thickness | 0.6 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, H.; Lee, J.; Park, S. Metasurface Source Antenna Gain Improvement Using Simple Side Metal Structure. Sensors 2024, 24, 6695. https://doi.org/10.3390/s24206695
Bae H, Lee J, Park S. Metasurface Source Antenna Gain Improvement Using Simple Side Metal Structure. Sensors. 2024; 24(20):6695. https://doi.org/10.3390/s24206695
Chicago/Turabian StyleBae, HongGuk, JaeGon Lee, and SangWook Park. 2024. "Metasurface Source Antenna Gain Improvement Using Simple Side Metal Structure" Sensors 24, no. 20: 6695. https://doi.org/10.3390/s24206695
APA StyleBae, H., Lee, J., & Park, S. (2024). Metasurface Source Antenna Gain Improvement Using Simple Side Metal Structure. Sensors, 24(20), 6695. https://doi.org/10.3390/s24206695