Accuracy Tests and Precision Assessment of Localizing Underground Utilities Using GPR Detection
Abstract
:1. Introduction
2. Materials and Methods
- —velocity of propagation of an electromagnetic wave,
- —antenna frequency,
- —vertical resolution of the GPR method,
- —horizontal resolution of the GPR method,
- —relative dielectric permittivity,
- —depth of the reflection boundary.
2.1. Methodology of the Tests
- —measurement series number,
- —measurement method number,
- —the type of network (1–4),
- —weights,
- —sum of squares of corrections,
- —sum of weights,
- —the product of the sum of weights and the sum of squares of corrections.
2.2. Statistical Testing
- —the result of the Shapiro-Wilk test,
- —constant, values in the W distribution table,
- —difference between extreme observations,
- —subsequent observations in the given sample,
- —subsequent differences between extreme observations,
- —average value.
- —the value of the Fisher-Snedecor test parameter,
- —values of standard deviations for series of results, assuming that .
- , —i-the valuers of observation from populations X and Y,
- —means from populations X and Y,
- —standard deviations of populations X and Y,
- —number of observations (X and Y have the same number of observations).
3. Results
Results of Statistical Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sărăcin, A. Using Georadar Systems for Mapping Underground Utility Networks. Procedia Eng. 2017, 209, 216–223. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, C.; Wang, Y.; Liu, S.; Zeng, Z.; Feng, X.; She, S. Ground Penetrating Radar Applications in Mapping Underground Utilities. In Proceedings of the 17th International Conference on Ground Penetrating Radar (GPR), 17th International Conference on Ground Penetrating Radar IEEE (GPR 2018), Rapperswil, Switzerland, 18–21 June 2018; pp. 1–4. [Google Scholar]
- Huston, D.; Xia, T.; Zhang, Y.; Fan, T.; Orfeo, D.; Razinger, J. Urban underground infrastructure mapping and assessment. In Proceedings of the SPIE 10168, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, Portland, OR, USA, 12 April 2017; p. 10168. [Google Scholar]
- Gabryś, M.; Kryszyn, K.; Ortyl, Ł. GPR Surveying Method as a Tool for Geodetic Verification of GESUT Database of Utilities In The Light of BSI PAS128. Rep. Geod. Geoinf. 2019, 107, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Saracin, A.; Negrila, A.; Cosarca, C.; Savu, A.; Calin, A. Georadar Technique and Microtunnelling. In Proceedings of the 16th International Multidisciplinary Scientific GeoConference SGEM 2016, Albena, Bulgaria, 30 June–6 July 2016; pp. 337–344. [Google Scholar] [CrossRef]
- Singh, N.P.; Nene, M.N. Buried object detection and analysis of GPR images: Using neural network and curve fitting. In Proceedings of the 2013 Annual International Conference on Emerging Research Areas and 2013 International Conference on Microelectronics, Communications and Renewable Energy in Kanjirapally, Kanjirapally, India, 4–6 June 2013; Available online: https://www.researchgate.net/publication/237100263_Buried_Object_Detection_and_Analysis_of_GPR_Images_Using_Neural_Network_and_Curve_Fitting (accessed on 10 October 2021).
- Annan, A.P. GPR—History, Trends, and Future Developments. Subsurf. Sens. Technol. Appl. 2002, 3, 253–270. [Google Scholar] [CrossRef]
- Gabryś, M.; Ortyl, Ł. Georeferencing of Multi-Channel GPR—Accuracy and Efficiency of Mapping of Underground Utility Networks. Remote Sens. 2020, 12, 2945. [Google Scholar] [CrossRef]
- Zhao, W.; Forte, E.; Tiziana, L.S.; Pipan, M.; Tian, G. Improved high-resolution GPR imaging and characterization of prehistoric archaeological features by means of attribute analysis. J. Archaeol. Sci. 2015, 54, 77–85. [Google Scholar] [CrossRef]
- Fąfara, Z.; Lewandowska-Śmierzchalska, J.; Matuła, R. Oil Pipeline Leak Detection Using GPR Method—Simple Case Study. AGH Drill. Oil Gas 2018, 35, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Bain, J.C.; Day, F.P.; Butnor, J.R. Experimental Evaluation of Several Key Factors Affecting Root Biomass Estimation by 1500 MHz Ground-Penetrating Radar. Remote Sens. 2017, 9, 1337. [Google Scholar] [CrossRef] [Green Version]
- Anchuela, Ó.P.; Casas-Sainz, A.M.; Soriano, M.A.; Pocoví-Juan, A. Mapping subsurface karst features with GPR: Results and limitations. Env. Geol 2009, 58, 391–399. [Google Scholar] [CrossRef]
- Porcelli, F.; Sambuelli, L.; Comina, C.; Spanò, A.; Lingua, A.; Calantropio, A.; Catanzariti, G.; Chiabrando, F.; Fischanger, F.; Maschio, P.; et al. Integrated Geophysics and Geomatics Surveys in the Valley of the Kings. Sensors 2020, 20, 1552. [Google Scholar] [CrossRef] [Green Version]
- Koganti, T.; Van De Vijver, E.; Allred, B.J.; Greve, M.H.; Ringgaard, J.; Iversen, B.V. Mapping of Agricultural Subsurface Drainage Systems Using a Frequency-Domain Ground Penetrating Radar and Evaluating Its Performance Using a Single-Frequency Multi-Receiver Electromagnetic Induction Instrument. Sensors 2020, 20, 3922. [Google Scholar] [CrossRef]
- Evans, R.D.; Frost, M.W.; Stonecliffe-Jones, M.; Dixon, N. Ground-penetrating radar investigations for urban roads. Proc. Inst. Civ. Eng.-Munic. Eng. 2006, 159, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Barzaghi, R.; Cazzaniga, N.E.; Pagliari, D.; Pinto, L. Vision-Based Georeferencing of GPR in Urban Areas. Sensors 2016, 16, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, J.M. Use of Georadar in the Detection of Infrastructures. In Proceedings of the 16° Congresso Nacional de Geotecnia, Ponta Delgada, Portugal, 27–30 May 2018. [Google Scholar]
- Leica Geosystems. Construction Catalogue; Tools for any site; Leica Geosystems AG: Heerbrugg, Switzerland, 2016. [Google Scholar]
- Technical Brochure Leica DS2000—Uncovering More Data; Leica Geosystems AG: Heerbrugg, Switzerland, 2016.
- Georadar Explorer 2.0—Ground Penetrating Radar for Buried Utilities Detection, Tesmec Next. Available online: www.tesmec.com (accessed on 11 October 2021).
- Ustawa z Dnia 17 Maja 1989 r. Prawo Geodezyjne i Kartograficzne, Dz.U. z 2020 r. poz. 1086 [Polish Legal Act from 17 May 1989 ‘Geodetic and Cartographic Law’]. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU19890300163 (accessed on 11 October 2021).
- Rozporządzenie Ministra Administracji i Cyfryzacji z Dnia 21 Października 2015 r. w Sprawie Powiatowej Bazy GESUT i Krajowej Bazy GESUT [Polish Executive Act from 21 October 2015 ‘on Regional and Country-Level GESUT Database’]. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20150001938 (accessed on 11 October 2021).
- Zhongming, X.; Ge, O.; Abbas, R. Robust Cascaded Frequency Filters to Recognize Rebar in GPR Data with Complex Signal Interference. Autom. Constr. 2021, 124, 103593. [Google Scholar] [CrossRef]
- Merkle, D.; Frey, C.; Reiterer, A. Fusion of ground penetrating radar and laser scanning for infrastructure mapping. J. Appl. Geod. 2021, 15, 31–45. [Google Scholar] [CrossRef]
- Lai, W.W.; Chang, R.K.; Völker, C.; Cheung, B.W. GPR wave dispersion for material characterization. Constr. Build. Mater. 2021, 282, 122597. [Google Scholar] [CrossRef]
- Pettinelli, E.; Di Matteo Mattei, E.; Crocco, L.; Soldovieri, F.; Redman, J.D.; Annan, A.P. GPR Response From Buried Pipes: Measurement on Field Site and Tomographic Reconstructions. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2639–2645. [Google Scholar] [CrossRef]
- Soldovieri, F.; Catapano, I.; Barone, P.M.; Lauro, S.E.; Mattei, E.; Pettinelli, E.; Valerio, G.; Comite, D.; Galli, A. GPR estimation of the geometrical features of buried metallic targets in testing conditions. Prog. Electromagn. Res. 2013, B 49, 339–362. [Google Scholar] [CrossRef] [Green Version]
- Olhoeft, G.R.; Smith, S.J.; Hyslip, P.; Selig, E.T. GPR in railroad investigations. In Proceedings of the 10th International Conference on Grounds Penetrating Radar, Delft, The Netherlands, 21–24 June 2004; pp. 635–638. [Google Scholar] [CrossRef]
- Ortyl, Ł.; Gabryś, M. Subsoil recognition for road investment supported by the integration of geodetic and GPR data in the form of a point cloud. Remote Sens. 2021, 13, 3886. [Google Scholar] [CrossRef]
- Leica ULTRA-Precision Utility Tracing; Technical brochure; Leica Geosystems AG: Heerbrugg, Switzerland, 2016.
- Stump, E.; Reichman, D.; Collins, L.M.; Malof, J.M. An Exploration of Gradient-Based Features for Buried Threat Detection Using a Handheld Ground Penetrating Radar. In Proceedings of the Conference Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXIV, Baltimore, MD, USA, 10 May 2019. [Google Scholar] [CrossRef]
- Jacob, R.W.; Hermance, J.F. Precision GPR measurements: Assessing and compensating for instrument drift. In Proceedings of the 10th International Conference on Ground Penetrating Radar, Delft, The Netherlands, 21–24 June 2004; pp. 159–162. [Google Scholar]
- Ristić, A.; Govedarica, M.; Pajewski, L.; Vrtunski, M.; Bugarinović, Ž. Using Ground Penetrating Radar to Reveal Hidden Archaeology: The Case Study of the Württemberg-Stambol Gate in Belgrade (Serbia). Sensors 2020, 20, 607. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Li, S.; Cai, H.; Kamat, V.R. GPR Signature Detection and Decomposition for Mapping Buried Utilities with Complex Spatial Configuration. J. Comput. Civ. Eng. 2018, 32, 04018026. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, W.; Li, J. Multi-GNSS Relative Positioning with Fixed Inter-System Ambiguity. Remote Sens. 2019, 11, 454. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, A.; Pramanik, A.; Baradol, R.A. Study of RTK performance of GNSS receivers under various satellite tracking and frequency of operations. In Proceedings of the 2013 Annual International Conference on Emerging Research Areas and 2013 International Conference on Microelectronics, Communications and Renewable Energy, Kerala, India, 4–6 June 2013; Volume 2013, pp. 1–5. [Google Scholar] [CrossRef]
- Bruyninx, C.; Legrand, J.; Fabian, A.; Pottiaux, E. GNSS metadata and data validation in the EUREF Permanent Network. GPS Solut. 2019, 23, 106. [Google Scholar] [CrossRef]
- Lenda, G.; Uznański, A.; Strach, M. Influence of Time Delays of Robotic Total Stations Witch High Sampling Frequency on Accuracy of Measurements to Moving Prisms. Arch. Civ. Eng. 2019, 65, 31–48. [Google Scholar] [CrossRef] [Green Version]
- Akinsunmade, A. GPR Imaging of Traffic Compaction Effects on Soil Structures. Acta Geophys. 2021, 69, 643–653. [Google Scholar] [CrossRef]
- Klotzsche, A.; Jonard, F.; Looms, M.C.; Kruk, J.; Huisman, J.A. Measuring Soil Water Content with Ground Penetrating Radar: A Decade of Progress. Vadose Zone J. 2018, 17, 180052. [Google Scholar] [CrossRef] [Green Version]
- User Manual 06.15.SA GEOMOR TECHNIK. Available online: https://geomor.com.pl/wp-content/uploads/2017/05/0615-Penetrologger.pdf (accessed on 11 October 2021).
- Martinez, A.; Byrnes, A. Modeling Dielectric-constant Values of Geologic Materials: An Aid to Ground-Penetrating Radar Data Collection and Interpretation. Curr. Res. Earth Sci. 2002, 247, 1. [Google Scholar]
- Liu, S.; Lu, Q.; Li, H.; Wang, Y. Estimation of Moisture Content in Railway Subgrade by Ground Penetrating Radar. Remote Sens. 2020, 12, 2912. [Google Scholar] [CrossRef]
- Forte, E.; Pipan, M. Review of multi-offset GPR applications: Data acquisition, processing and analysis. Signal Process. 2017, 132, 210–220. [Google Scholar] [CrossRef]
- Ecophysographic Study for the Spatial Development Plan for the Masovian Voivodeship, Warsaw. 2018. Available online: https://mbpr.pl (accessed on 5 June 2021).
- Geoportal. Available online: https://mapy.geoportal.gov.pl/imap/Imgp_2.html?locale=pl&gui=new&sessionID=5469558 (accessed on 5 June 2021).
- Fuentes, D.E.D.; Toro, F.G.; Lu, D.; Becker, U.; Manz, H.; Cai, B. Simulink based prototype for real-time intelligent GNSS-based localization system. In Proceedings of the 2015 International Association of Institutes of Navigation World Congress (IAIN), Prague, Czech Republic, 20–23 October 2015; pp. 1–7. [Google Scholar] [CrossRef]
- Head Office of Land Surveying and Cartography. Available online: http://www.gugik.gov.pl/pzgik (accessed on 5 June 2021).
- Roberts, R.; Daniels, J.J.; Vendi, M. Seasonal Variations and Ground-Penetrating Radar Data Repeatability; SEG Library; Society of Exploration Geophysicists: Tulsa, Oklahoma, 1991. [Google Scholar] [CrossRef]
- Alumbaugh, D.; Chang, P.Y.; Paprocki, L.; Brainard, J.R.; Glass, R.J.; Rautman, C.A. Estimating moisture contents in the vadose zone using cross-borehole ground penetrating radar: A study of accuracy and repeatability. Water Resour. Res. 2002, 38, 45-1–45-12. [Google Scholar] [CrossRef] [Green Version]
- Ortyl, Ł. Assessing of the effect of selected parameters of GPR surveying in diagnosis of the condition of road pavement structure. Meas. Autom. Monit. 2015, 61, 140–147. [Google Scholar]
- Villasenor, A.J.A.; González, E.E. A Generalization of Shapiro–Wilk’s Test for Multivariate Normality. Commun. Stat.-Theory Methods 2019, 38, 1870–1883. [Google Scholar] [CrossRef]
- Henderson, A.R. Testing Experimental Data for Univariate Normality. Clin. Chim. Acta 2006, 366, 112–129. [Google Scholar] [CrossRef] [PubMed]
- Naresh Kumar, M.; Murthy, C.S.; Sesha Sai, M.V.R.; Roy, P.S. On the Use of Standardized Precipitation Index (SPI) for Drought Intensity Assessment. Meteorol. Appl. 2009, 16, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Braselton, J.P.; Abell, M.L.; Rafter, J.A. Statistics with Mathematica; Academic Press: Cambridge, MA, USA, 1999; p. 632. [Google Scholar]
- Hanusz, Z.; Tarasińska, J. Normalization of the Kolmogorov–Smirnov and Shapiro–Wilk tests of normality. Biom. Lett. 2015, 52, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Verrill, S.P. Some Asymptotic Results Concerning Censored Data Versions of the Shapiro-Wilk Goodness of Fit Test. Ph.D. Thesis, University of Wisconsin, Madison, WI, USA, 1981; p. 772. [Google Scholar]
- Gayle, J.B.; Rivera, J.P. Simulation Study of the Power of the Kolmogorov-Smirnov and Z Tests for the Exponential Distribution; National Aeronautics and Space Administration; NASA Technical Paper 1311; Scientific and Technical Information Office: Washington, DC, USA, 1978; p. 15. [Google Scholar]
- García-Balboa, J.; Ruiz-Armenteros, A.M.; Rodríguez-Avi, J.; Reinoso-Gordo, J.F.; Robledillo-Román, J. Field Procedure for the Assessment of the Centring Uncertainty of Geodetic and Surveying Instruments. Sensors 2018, 18, 3187. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Tang, M.L.; Chan, P.S. A generalized Shapiro–Wilk W statistic for testing high-dimensional normality. Comput. Stat. Data Anal. 2009, 53, 3883–3891. [Google Scholar] [CrossRef]
- Freidlin, B.; Miao, W.; Gastwirth, J. On the Use of the Shapiro-Wilk Test in Two-Stage Adaptive Inference for Paired Data from Moderate to Very Heavy Tailed Distributions. Biom. J. 2003, 45, 887–900. [Google Scholar] [CrossRef]
- Besset, D.H. Object-Oriented Implementation of Numerical Methods: An Introduction with Java & Smalltalk; Morgan Kaufmann: Burlington, MA, USA, 2001; p. 766. [Google Scholar]
- Motsnyi, F.V. Chi-square, Student and Fisher-Snedecor Statistical Distributions and Their Application. Stat. Ukr. 2018, 80, 16–23. [Google Scholar] [CrossRef]
- International Standards ISO 17123-1,2,3,4,5,6,7 Optics and Optical Instruments, Field Testing Procedures for Surveying and Measuring Instruments; International Organization for Standardization: Geneve, Switzerland, 2001.
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Rodríguez-Fernández, N.; Wigneron, J.P.; Al-Yaari, A.; Al Bitar, A.; Albergel, C.; Calvet, J.-C. Evaluation of SMOS, SMAP, ASCAT and Sentinel-1 Soil Moisture Products at Sites in Southwestern France. Remote Sens. 2018, 10, 569. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Panda, R.K.; Bisht, D.S. Improved Generalized Calibration of an Impedance Probe for Soil Moisture Measurement at Regional Scale Using Bayesian Neural Network and Soil Physical Properties. J. Hydrol. Eng. 2021, 26. [Google Scholar] [CrossRef]
- Sami, A. Constant energy calibration for permittivity based moisture probes. J. Hydrol. 2014, 510, 79–91. [Google Scholar] [CrossRef]
- Bircher, S.; Andreasen, M.; Vuollet, J.; Vehviläinen, J.; Rautiainen, K.; Jonard, F.; Weihermüller, L.; Zakharova, E.; Wigneron, J.-P.; Kerr, Y.H. Soil moisture sensor calibration for organic soil surface layers. Geosci. Instrum. Methods Data Syst. 2016, 5, 109–125. [Google Scholar] [CrossRef] [Green Version]
- Artusi, R.; Verderio, P.; Marubini, E. Bravais-Pearson and Spearman Correlation Coefficients: Meaning, Test of Hypothesis and Confidence Interval. Int. J. Biol. Markers 2002, 17, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Statistica. Available online: https://www.statsoft.pl/statistica_13/ (accessed on 5 June 2021).
- Surfer. Available online: https://www.goldensoftware.com/products/surfer (accessed on 5 June 2021).
- Hugenschmidt, J.; Mastrangelo, R. GPR inspection of concrete bridges. Cem. Concrete Compos. 2006, 28, 384–392. [Google Scholar] [CrossRef]
- Mahmoudzadeh, M.R.; Vanclooster, M.; Minet, J.; Lambot, S. Ground-penetrating radar for correlation analysis of temporal soil moisture stability and land-slope. In Proceedings of the International Conference on Ground Penetrating Radar, GPR, Shanghai, China, 4–8 June 2012. [Google Scholar] [CrossRef]
- Ardekani, M.R.; Neyt, X.; Benedetto, D.; Slob, E.; Wesemael, B.; Bogaert, P.; Craeye, C.; Lambot, S. Soil moisture variability effect on GPR data. In Proceedings of the 15th International Conference on Ground Penetrating Radar, Brussels, Belgium, 30 June–4 July 2014. [Google Scholar] [CrossRef]
Feature | Specifications |
---|---|
antenna footprint | 0.4 m–0.5 m |
antenna frequencies | 250 MHz 700 MHz |
sampling frequency | 400 kHz |
scan rate per channel | 381 scans/s |
scan interval | 42 scans/m |
Medium | |
---|---|
air | 1 |
water | 81 |
asphalt | 2.5–3.5 |
concrete | 3–9 |
ice | 3.2 |
snow | 1.4 |
dry sand | 3–5 |
sand saturated with water | 20–30 |
sandy soil | 11–18 |
silt | 14–36 |
clay | 25–36 |
limestone | 6–11 |
peat | 50–78 |
The Type of Network | The Average Error of GPR Detection [m] | ||
---|---|---|---|
Method 1. | Method 2. | Method 3. | |
Power grid | 0.03 | 0.05 | 0.06 |
Gas network | 0.03 | 0.04 | 0.07 |
Heating network | 0.02 | 0.08 | 0.04 |
Telecommunication network | 0.04 | 0.03 | 0.01 |
Type of Technical Infrastructure | Shapiro-Wilk Test (SW) | |||||
---|---|---|---|---|---|---|
1. Method | 2. Method | 3. Method | ||||
W | Wkr | W | Wkr | W | Wkr | |
power grid | 0.982 | 0.960 | 0.977 | 0.957 | 0.972 | 0.918 |
gas network | 0.973 | 0.927 | 0.980 | 0.940 | 0.939 | 0.850 |
heating network | 0.954 | 0.940 | 0.961 | 0.934 | 0.906 | 0.850 |
telecommunication network | 0.972 | 0.927 | 0.977 | 0.934 | 0.930 | 0.818 |
Type of Technical Infrastructure | Kołmogorov-Smirnov Test (SW) | |||||
---|---|---|---|---|---|---|
1. Method | 2. Method | 3. Method | ||||
p | α | p | α | p | α | |
power grid | 0.20 | 0.05 | 0.10 | 0.05 | 0.20 | 0.05 |
gas network | 0.20 | 0.05 | 0.20 | 0.05 | 0.20 | 0.05 |
heating network | 0.15 | 0.05 | 0.05 | 0.05 | 0.10 | 0.05 |
telecommunication network | 0.20 | 0.05 | 0.20 | 0.05 | 0.20 | 0.05 |
The First Method | The Second Method | Third Method | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Measurement Series | p | Hypothesis | Measurement Series | p | Hypothesis | Measurement Series | p | Hypothesis | |||
power grid | power grid | power grid | rejected hypothesis | ||||||||
1 | 2 | 0.03 | rejected hypothesis | 1 | 2 | 0.72 | no reason to reject the null hypothesis | 1 | 2 | 0.03 | |
5 | 2 | 0.04 | 1 | 3 | 0.61 | gas network | no reason to reject the null hypothesis | ||||
2 | 4 | 0.04 | 1 | 4 | 0.66 | 1 | 2 | 0.35 | |||
1 | 3 | 0.06 | no reason to reject the null hypothesis | 2 | 3 | 0.44 | heating network | ||||
1 | 4 | 0.93 | 2 | 4 | 0.92 | 1 | 2 | 0.35 | |||
2 | 3 | 0.70 | 3 | 4 | 0.40 | telecommunication network | |||||
3 | 4 | 0.08 | 5 | 3 | 0.08 | 1 | 2 | 0.89 | |||
5 | 1 | 0.96 | 5 | 1 | 0.02 | rejected hypothesis | |||||
5 | 3 | 0.08 | 5 | 2 | 0.01 | ||||||
5 | 4 | 0.98 | 5 | 4 | 0.01 | ||||||
gas network | gas network | ||||||||||
1 | 2 | 0.87 | no reason to reject the null hypothesis | 1 | 2 | 0.62 | no reason to reject the null hypothesis | ||||
1 | 3 | 0.84 | 1 | 3 | 0.39 | ||||||
1 | 4 | 0.64 | 1 | 4 | 0.62 | ||||||
2 | 3 | 0.97 | 2 | 3 | 0.82 | ||||||
2 | 4 | 0.71 | 2 | 4 | 0.99 | ||||||
3 | 4 | 0.74 | 3 | 4 | 0.82 | ||||||
5 | 1 | 0.73 | 5 | 1 | 0.81 | ||||||
5 | 2 | 0.83 | 5 | 2 | 0.52 | ||||||
5 | 3 | 0.86 | 5 | 3 | 0.44 | ||||||
5 | 4 | 0.86 | 5 | 4 | 0.80 | ||||||
heating network | heating network | rejected hypothesis | |||||||||
1 | 2 | 0.54 | no reason to reject the null hypothesis | 1 | 2 | 0.04 | |||||
1 | 3 | 0.11 | 1 | 3 | 0.06 | no reason to reject the null hypothesis | |||||
1 | 4 | 0.47 | 1 | 4 | 0.54 | ||||||
2 | 3 | 0.32 | 2 | 3 | 0.59 | ||||||
2 | 4 | 0.86 | 2 | 4 | 0.19 | ||||||
3 | 4 | 0.48 | 3 | 4 | 0.34 | ||||||
5 | 1 | 0.90 | 5 | 1 | 0.18 | ||||||
5 | 2 | 0.68 | 5 | 2 | 0.64 | ||||||
5 | 3 | 0.20 | 5 | 3 | 1.00 | ||||||
5 | 4 | 0.59 | 5 | 4 | 0.46 | ||||||
telecommunication network | telecommunication network | ||||||||||
1 | 3 | 0.02 | rejected hypothesis | 1 | 2 | 0.57 | no reason to reject the null hypothesis | ||||
1 | 4 | 0.01 | 1 | 3 | 0.22 | ||||||
1 | 2 | 0.07 | no reason to reject the null hypothesis | 1 | 4 | 0.23 | |||||
2 | 3 | 0.30 | 2 | 3 | 0.47 | ||||||
2 | 4 | 0.10 | 2 | 4 | 0.49 | ||||||
3 | 4 | 0.77 | 3 | 4 | 0.99 | ||||||
5 | 1 | 0.06 | 5 | 1 | 0.03 | rejected hypothesis | |||||
5 | 2 | 0.81 | 5 | 2 | 0.01 | ||||||
5 | 3 | 0.45 | 5 | 3 | 0.01 | ||||||
5 | 4 | 0.22 | 5 | 4 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karsznia, K.R.; Onyszko, K.; Borkowska, S. Accuracy Tests and Precision Assessment of Localizing Underground Utilities Using GPR Detection. Sensors 2021, 21, 6765. https://doi.org/10.3390/s21206765
Karsznia KR, Onyszko K, Borkowska S. Accuracy Tests and Precision Assessment of Localizing Underground Utilities Using GPR Detection. Sensors. 2021; 21(20):6765. https://doi.org/10.3390/s21206765
Chicago/Turabian StyleKarsznia, Krzysztof Ryszard, Klaudia Onyszko, and Sylwia Borkowska. 2021. "Accuracy Tests and Precision Assessment of Localizing Underground Utilities Using GPR Detection" Sensors 21, no. 20: 6765. https://doi.org/10.3390/s21206765
APA StyleKarsznia, K. R., Onyszko, K., & Borkowska, S. (2021). Accuracy Tests and Precision Assessment of Localizing Underground Utilities Using GPR Detection. Sensors, 21(20), 6765. https://doi.org/10.3390/s21206765