Design of a Novel Wideband Leaf-Shaped Printed Dipole Array Antenna Using a Parasitic Loop for High-Power Jamming Applications
Abstract
:1. Introduction
2. The Proposed Antenna Design and Performance
3. Array Extension and Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yoon, J.H.; Park, Y.; Roh, J.E.; Park, S.C. Multiple step interlaced beam scan to minimize the deviation of radar detection performance. J. Electromagn. Eng. Sci. 2020, 20, 125–130. [Google Scholar] [CrossRef]
- Kindt, R.W.; Pickles, W.R. Ultrawideband all-metal flared-notch array radiator. IEEE Trans. Antennas Propag. 2010, 58, 3568–3575. [Google Scholar] [CrossRef]
- Malekpoor, H.; Jam, S. Enhanced bandwidth of shorted patch antennas using folded-patch techniques. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 198–201. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, Y.; Qian, Z.; Cao, W.; Wang, L. Design of compact air-vias-perforated SIW horn antenna with partially detached broad walls. IEEE Antennas Wirel. Propag. Lett. 2016, 64, 2100–2107. [Google Scholar] [CrossRef]
- Zhang, F.; Fang, G.; Ji, Y.; Ju, H.; Shao, J. A novel compact double exponentially tapered slot antenna (DETSA) for GPR applications. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 195–198. [Google Scholar] [CrossRef]
- Holland, S.S.; Vouvakis, M.N. The planar ultrawideband modular antenna (PUMA) array. IEEE Trans. Antennas Propag. 2012, 60, 130–140. [Google Scholar] [CrossRef]
- Anagnostou, D.E.; Papapolymerou, J.; Tentzeris, M.M.; Christodoulou, C.G. A printed log-periodic Koch-dipole array (LPKDA). IEEE Antennas Wirel. Propag. Lett. 2008, 7, 456–460. [Google Scholar] [CrossRef]
- Lim, T.H.; Park, J.; Choo, H. Design of a Vivaldi-fed hybrid horn antenna for low-frequency gain enhancement. IEEE Trans. Antennas Propag. 2018, 66, 438–443. [Google Scholar] [CrossRef]
- Choi, Y.S.; Hong, J.H.; Woo, J.M. Array synthesis horn antenna with an extended horn and a stepped corrugated structure for high-power microwave applications. J. Electromagn. Eng. Sci. 2020, 20, 110–114. [Google Scholar] [CrossRef]
- Chang, L.; He, S.; Zhang, J.Q.; Li, D. A compact dielectric-loaded log-periodic dipole array (LPDA) antenna. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2759–2762. [Google Scholar] [CrossRef]
- Holland, S.S.; Vouvakis, M.N. The banyan tree antenna array. IEEE Trans. Antennas Propag. 2011, 59, 4060–4070. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Aly, F. Design of compact Vivaldi antenna arrays for UWB see through wall applications. Prog. Electromagn. Res. 2008, 82, 401–418. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Yang, S.; Xiao, S.; Chen, Y.; Qu, S. Low-profile, lightweight, ultra-wideband tightly coupled dipole arrays loaded with split rings. IEEE Trans. Antennas Propag. 2019, 67, 4257–4262. [Google Scholar] [CrossRef]
- Nikolaou, S.; Ponchak, G.E.; Papapolymerou, J.; Tentzeris, M.M. Conformal double exponentially tapered slot antenna (DETSA) on LCP for UWB applications. IEEE Trans. Antennas Propag. 2006, 54, 1663–1669. [Google Scholar] [CrossRef]
- CST Microwave Studio. Available online: http://www.cst.com (accessed on 10 October 2021).
- Wasylkiwskyj, W.; Kahn, W. Element patterns and active reflection coefficient in uniform phased arrays. IEEE Trans. Antennas Propag. 1974, 22, 207–212. [Google Scholar] [CrossRef]
- Pozar, D.M. The active element pattern. IEEE Trans. Antennas Propag. 1994, 42, 1176–1178. [Google Scholar] [CrossRef]
- Hur, J.; Byun, G.; Choo, H. Design of a planar periodic lossy magnetic surface to improve active array patterns with enhanced isolation. IET Microw. Antennas Propag. 2018, 12, 2383–2389. [Google Scholar] [CrossRef]
- Zhang, S.; Gong, S.; Gong, Q.; Guan, Y.; Lu, B. Application of the active element pattern method for calculation of the scattering pattern of large finite arrays. IEEE Trans. Antennas Propag. 2011, 10, 83–86. [Google Scholar] [CrossRef]
- Kelley, D.F.; Stutzman, W.L. Array antenna pattern modeling methods that include mutual coupling effects. IEEE Trans. Antennas Propag. 1993, 41, 1625–1632. [Google Scholar] [CrossRef]
- Ghimire, J.; Diba, F.D.; Kim, J.H.; Choi, D.Y. Vivaldi antenna arrays feed by frequency-independent phase Shifter for high directivity and gain used in microwave sensing and communication applications. Sensors 2021, 21, 6091. [Google Scholar] [CrossRef]
- Wang, J.; Cui, W.; Zhou, Y.; Liu, R.; Wang, M.; Fan, C.; Li, E. Design of wideband antenna array with dielectric lens and defected ground structure. Electronics 2021, 10, 2066. [Google Scholar] [CrossRef]
Parameter | Values | Parameter | Values |
---|---|---|---|
h1 | 119 mm | l1 | 115.6 mm |
h2 | 12 mm | l2 | 3.4 mm |
h3 | 40 mm | dr | 30.7 mm |
w1 | 39.4 mm | dl | 35.4 mm |
w2 | 0.3 mm | c1 | −0.025 |
ri | 0.056 | c2 | −39.5 |
ro | −0.6 | c3 | −5.6 × 104 |
sl | 12 mm | c4 | −15.9 |
sw | 0.5 mm | t | 1.6 mm |
si | 1 mm | (fx, fy) | (0, 22.8) |
N | 5 |
Parameter | Values | Parameter | Values |
---|---|---|---|
h1 | 96.3 mm | l1 | 25.8 mm |
h2 | 14 mm | l2 | 93.6 mm |
h3 | 29.9 mm | dr | 9.2 mm |
w1 | 38.2 mm | dl | 12 mm |
w2 | 0.9 mm | c1 | −49.1 |
ri | 0.038 | c2 | −89.9 |
ro | −0.9 | c3 | −4.5 × 106 |
sl | 7.3 mm | c4 | −15.3 |
sw | 0.8 mm | t | 1.6 mm |
si | 0.6 mm | (fx, fy) | (0, 22.8) |
N | 5 |
Reference | Array Dimension (Width mm × Length mm × Thickness mm) | Operating Frequency Band (GHz) | The Number of Elements | Substrate Material | Array Gain (dBi) |
---|---|---|---|---|---|
[9] | 500 × 500 × 1001.5 | 1.75–3 | 4 | Metal | 19.7 (at 2.45 GHz) |
[12] | 480 × 210 | 2–4 | 8 | Rogers RT5880 | ≥12 (at 2 to 4 GHz) |
[13] | 579.12 × 579.12 × 65.6 | 0.3–2.15 | 64 | TLY-5 | 20 (at 2 GHz) |
[21] | 167.48 × 158.25 × 0.6 | 2.5–6.8 and 7.5–9.5 | 6 | Taconic substrate (εr = 4.3, tanδ = 0.0035) | 14.12 (at 4.5 GHz) |
[22] | 43 × 72 × 0.762 | 7–11.5 | 4 | Rogers 3003 | 12.1 (at 10.7 GHz) |
Proposed array | 420.2 × 96.3 × 1.6 | 3–6 | 11 | TLY-5 | 13.7 (at 4.5 GHz) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, E.; Lim, T.H.; Park, S.; Choo, H. Design of a Novel Wideband Leaf-Shaped Printed Dipole Array Antenna Using a Parasitic Loop for High-Power Jamming Applications. Sensors 2021, 21, 6882. https://doi.org/10.3390/s21206882
Kang E, Lim TH, Park S, Choo H. Design of a Novel Wideband Leaf-Shaped Printed Dipole Array Antenna Using a Parasitic Loop for High-Power Jamming Applications. Sensors. 2021; 21(20):6882. https://doi.org/10.3390/s21206882
Chicago/Turabian StyleKang, Eunjung, Tae Heung Lim, Seulgi Park, and Hosung Choo. 2021. "Design of a Novel Wideband Leaf-Shaped Printed Dipole Array Antenna Using a Parasitic Loop for High-Power Jamming Applications" Sensors 21, no. 20: 6882. https://doi.org/10.3390/s21206882
APA StyleKang, E., Lim, T. H., Park, S., & Choo, H. (2021). Design of a Novel Wideband Leaf-Shaped Printed Dipole Array Antenna Using a Parasitic Loop for High-Power Jamming Applications. Sensors, 21(20), 6882. https://doi.org/10.3390/s21206882