Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microfluidic Device
2.2. Sensors and Interfacing
2.2.1. pH SensorPlugs
2.2.2. FOP-MIV Pressure Sensors
2.3. Custom Connectors
2.4. Recalibration and Testing of pH SensorPlugs
2.5. Calibration and Testing of FOP-MIV Sensors
3. Results and Discussion
3.1. pH SensorPlugs
3.2. FOP-MIV Sensors
3.2.1. Calibration
3.2.2. Proof-of-Concept Experiments (Injection of Water)
4. Final Remarks and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Holmes, D.; Gawad, S. The Application of Microfluidics in Biology. In Microengineering in Biotechnology; Hughes, M.P., Hoettges, K.F., Eds.; Springer Science & Business Media: Berlin, Germany, 2010; pp. 55–80. ISBN 978-1-58829-381-7. [Google Scholar]
- Sackmann, E.K.; Fulton, A.L.; Beebe, D.J. The present and future role of microfluidics in biomedical research. Nature 2014, 507, 181–189. [Google Scholar] [CrossRef]
- Riahi, R.; Tamayol, A.; Shaegh, S.A.M.; Ghaemmaghami, A.M.; Dokmeci, M.R.; Khademhosseini, A. Microfluidics for advanced drug delivery systems. Curr. Opin. Chem. Eng. 2015, 7, 101–112. [Google Scholar] [CrossRef]
- Sosa-Hernandez, E.J.; Villalba-Rodriguez, A.M.; Romero-Castillo, K.D.; Aguilar-Aguila-Isaias, M.A.; Garcia-Reyes, I.E.; Hernandez-Antonio, A.; Ahmed, I.; Sharma, A.; Parra-Saldivar, R.; Iqbal, H.M.N. Organs-on-a-Chip Module: A Review from the Development and Applications Perspective. Micromachines 2018, 9, 536. [Google Scholar] [CrossRef] [Green Version]
- Menon, N.V.; Lim, S.B.; Lim, C.T. Microfluidics for personalized drug screening of cancer. Curr. Opin. Pharmacol. 2019, 48, 155–161. [Google Scholar] [CrossRef]
- Cui, P.; Wang, S. Application of microfluidic chip technology in pharmaceutical analysis: A review. J. Pharm. Anal. 2019, 9, 238–247. [Google Scholar] [CrossRef]
- Basiri, A.; Heidari, A.; Nadi, M.F.; Fallahy, M.T.P.; Nezamabadi, S.S.; Sedighi, M.; Saghazadeh, A.; Rezaei, N. Microfluidic devices for detection of RNA viruses. Rev. Med. Virol. 2021, 31, e2154. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, A.-G.; Chircov, C.; Birca, A.C.; Grumezescu, A.M. Fabrication and Applications of Microfluidic Devices: A Review. Int. J. Mol. Sci. 2021, 22, 2011. [Google Scholar] [CrossRef] [PubMed]
- Winkler, S.; Grünberger, A.; Bahnemann, J. Microfluidics in Biotechnology: Quo Vadis. In Advances in Biochemical Engineering/Biotechnology; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Jaywant, S.A.; Airf, K.M. A Comprehensive Review of Microfluidic Water Quality Monitoring Sensors. Sensors 2019, 19, 4781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karadimitriou, N.K.; Hassanizadeh, S.M. A review of micromodels and their use in two-phase flow studies. Vadose Zone J. 2012, 11. [Google Scholar] [CrossRef]
- Fu, T. Microfluidics in CO2 Capture, Sequestration, and Applications. In Advances in Microfluidics-New Applications in Biology, Energy, and Materials Sciences; Yu, X.-Y., Ed.; IntechOpen: London, UK, 2016; pp. 293–313. ISBN 978-953-51-2785-7. [Google Scholar]
- Guo, F.; Aryana, S. An experimental investigation of nanoparticle-stabilized CO2 foam used in enhanced oil recovery. Fuel 2016, 186, 430–442. [Google Scholar] [CrossRef]
- Bao, B.; Riordon, J.; Mostowfi, F.; Sinton, D. Microfluidic and nanofluidic phase behaviour characterization for industrial CO2, oil and gas. Lab Chip 2017, 17, 2740–2759. [Google Scholar] [CrossRef]
- Li, Y.; Kazemafir, F.; Blois, G.; Christensen, K.T. Micro-PIV measurements of multiphase flow of water and liquid CO2 in 2-D heterogeneous porous micromodels. Water Resour. Res. 2017, 53, 6178–6196. [Google Scholar] [CrossRef]
- Gogoi, S.; Gogoi, S.B. Review on microfluidic studies for EOR application. J. Pet. Explor. Prod. Technol. 2019, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Mahabadi, N.; Jang, J.; van Paassen, L.A. Assessing the Kinetics and Pore-Scale Characteristics of Biological Calcium Carbonate Precipitation in Porous Media using a Microfluidic Chip Experiment. Water Resour. Res. 2020, 56, e2019WR025420. [Google Scholar] [CrossRef]
- Jahanbakhsh, A.; Wlodarczyk, K.L.; Hand, D.P.; Maier, R.R.J.; Maroto-Valer, M.M. Review of microfluidic devices and imaging techniques for fluid flow study in porous geomaterials. Sensors 2020, 20, 4030. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Wan, J.; Kneafsey, T.J.; Tokunaga, T.K. Dewetting of silica surfaces upon reactions with supercritical CO2 and brine: Pore-scale studies in micromodels. Environ. Sci. Technol. 2012, 46, 4228–4235. [Google Scholar] [CrossRef] [Green Version]
- Shaegh, S.A.M.; De Ferrari, F.; Zhang, Y.S.; Nabavinia, M.; Mohammad, N.B.; Ryan, J.; Pourmand, A.; Laukaitis, E.; Sadeghian, R.B.; Nadhman, A.; et al. A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices. Biomicrofluidics 2016, 10, 044111. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.; Shaik, I.; Lagraauw, R.; Bikkina, P. A semi-experimental procedure for the estimation of permeability of microfluidic pore network. MethodsX 2019, 6, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Zarikos, I.M.; Hassanizadeh, S.M.; Van Oosterhout, L.M.; Van Oordt, W. Manufacturing a micro-model with integrated fibre optic pressure sensors. Transp. Porous Med. 2018, 122, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Lei, K.F. Review on Impedance Detection of Cellular Responses in Micro/Nano Environment. Micromachines 2014, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Man, Y.; Maji, D.; An, R.; Ahuja, S.P.; Little, J.A.; Suster, M.A.; Mohseni, P.; Gurkan, U.A. Microfluidic electrical impedance assessment of red blood cell-mediated microvascular occlusion. Lab Chip 2021, 21, 1036–1048. [Google Scholar] [CrossRef] [PubMed]
- Davaji, B.; Lee, C.H. Thermal Measurement Techniques in Analytical Microfluidic Devices. J. Vis. Exp. 2015, 100, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Viefhues, M. Analytics in Microfluidic Systems. In Advances in Biochemical Engineering/Biotechnology; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Kong, T.F.; Shen, X.; Yang, C. Lab-on-chip microfluidic impedance measurement for laminar flow ratio sensing and differential conductivity difference detection. Appl. Phys. Lett. 2017, 110, 233501. [Google Scholar] [CrossRef]
- Ehgartner, J.; Sulzer, P.; Burger, T.; Kasjanow, A.; Bouwes, D.; Krühne, U.; Klimant, I.; Mayr, T. Online analysis of oxygen inside silicon-glass microreactors with integrated optical sensors. Sens. Actuators B Chem. 2016, 228, 748–757. [Google Scholar] [CrossRef] [Green Version]
- Gruber, P.; Marques, M.P.C.; Szita, N.; Mayr, T. Integration and application of optical chemical sensors in microbioreactors. Lab Chip 2017, 17, 2693–2712. [Google Scholar] [CrossRef] [Green Version]
- pH SensorPlug. Available online: https://www.presens.de/products/detail/ph-sensorplug (accessed on 21 April 2021).
- Medical Pressure Montoring. Available online: https://fiso.com/wp-content/uploads/2018/10/MC-00263_-Medical-Pressure-Monitoring-Product-Datasheet_R7.pdf (accessed on 9 September 2021).
- Poeggel, S.; Tosi, D.; Duraibabu, D.; Leen, G.; Mcgrath, D.; Lewis, E. Optical fibre pressure sensors in medical applications. Sensors 2015, 15, 17115–17148. [Google Scholar] [CrossRef]
- Wlodarczyk, K.L.; Hand, D.P.; Maroto-Valer, M.M. Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser. Sci. Rep. 2019, 9, 20215. [Google Scholar] [CrossRef]
- Wlodarczyk, K.L.; Carter, R.M.; Jahanbakhsh, A.; Lopes, A.A.; Mackenzie, M.D.; J Maier, R.R.; Hand, D.P.; Maroto-Valer, M.M. Rapid laser manufacturing of microfluidic devices from glass substrates. Micromachines 2018, 9, 409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giancoli, D.C. Pressure in fluids. In Physics-Principles with Applications; Pearson Education Ltd.: London, UK, 2016; pp. 262–263. ISBN 1-292-05712-2. [Google Scholar]
- Schomburg, W.K. Membranes. In Introduction to Microsystem Design; Springer: Berlin/Heidelberg, Germany, 2011; pp. 29–52. ISBN 978-3-642-19488-7. [Google Scholar]
- Microfluidic ChipShop Lab-on-a-Chip Catalogue 06/2013. Available online: http://www.microfluidic-chipshop.eu/Download/Lab-on-a-chip_06-2013_150dpi.pdf (accessed on 9 November 2021).
Parameter | pH SensorPlug | FOP-MIV |
---|---|---|
Sensor diameter | ≈1.8 mm 1 | 550 µm |
Measurement range | pH 5.5–8.5 | ±0.4 bar 4 |
Sensor accuracy | ±0.05 pH 2 | ±1.3 mbar 5 |
Time response | <120 s 3 | - |
Sampling rate | ≤0.5 Hz | Up to 250 Hz 6 |
Sensitivity thermal effect | - | <0.4 mbar/°C |
Operational temperature | 0 to 50 °C | 15 to 45 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wlodarczyk, K.L.; MacPherson, W.N.; Hand, D.P.; Maroto-Valer, M.M. Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors. Sensors 2021, 21, 7493. https://doi.org/10.3390/s21227493
Wlodarczyk KL, MacPherson WN, Hand DP, Maroto-Valer MM. Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors. Sensors. 2021; 21(22):7493. https://doi.org/10.3390/s21227493
Chicago/Turabian StyleWlodarczyk, Krystian L., William N. MacPherson, Duncan P. Hand, and M. Mercedes Maroto-Valer. 2021. "Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors" Sensors 21, no. 22: 7493. https://doi.org/10.3390/s21227493
APA StyleWlodarczyk, K. L., MacPherson, W. N., Hand, D. P., & Maroto-Valer, M. M. (2021). Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors. Sensors, 21(22), 7493. https://doi.org/10.3390/s21227493