A Highly Sensitive Ammonia Gas Sensor Using Micrometer-Sized Core–Shell-Type Spherical Polyaniline Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Polystyrene Microspheres
2.3. Preparation of the Core–Shell Type of Polyaniline Microspheres
2.4. Preparation of Sensing Films
2.5. Measurement of NH3 Gas Sensing Properties
2.6. Characterization
3. Results and Discussion
3.1. Characterization of the Core–Shell Type of Polyaniline Microspheres
3.2. Sensing Properties toward NH3 Gas
3.3. Mechanism of Response Increase
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Itoh, N.; Oshima, A.; Suga, E.; Sato, T. Kinetic enhancement of ammonia decomposition as a chemical hydrogen carrier in palladium membrane reactor. Catal. Today 2014, 236, 70–76. [Google Scholar] [CrossRef]
- Hejze, T.; Besenhard, J.O.; Kordesch, K.; Cifrain, M.; Aronsson, R.R. Current status of combined systems using alkaline fuel cells and ammonia as a hydrogen carrier. J. Power Sources 2008, 176, 490–493. [Google Scholar] [CrossRef]
- Nayak-Luke, R.; Banares-Alcantara, R.; Wilkinson, I. “Green” ammonia: Impact of renewable energy intermittency on plant sizing and levelized cost of ammonia. Ind. Eng. Chem. Res. 2018, 57, 14607–14616. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Xia, M.; Wang, H.; Huang, K.; Qian, C.; Maravelias, C.T.; Ozin, G.A. Greening ammonia toward the solar ammonia refinery. Joule 2018, 2, 1055–1074. [Google Scholar] [CrossRef] [Green Version]
- Timmer, B.; Olthuis, W.; van den Berg, A. Ammonia sensors and their applications—A review. Sens. Actuators B 2005, 107, 666–677. [Google Scholar] [CrossRef]
- Krishnan, S.T.; Devadhasan, J.P.; Kim, S. Recent analytical approaches to detect exhaled breath ammonia with special reference to renal patients. Anal. Bioanal. Chem. 2017, 409, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Natale, C.D.; Paolesse, R.; Martinelli, E.; Capuano, R. Solid-state gas sensors for breath analysis: A review. Anal. Chim. Acta 2014, 824, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Righettoni, M.; Amann, A.; Pratsinis, S.E. Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Mater. Today 2015, 18, 163–171. [Google Scholar] [CrossRef]
- Stejskal, J.; Polyaniline, G.R.G. Preparation of a conducting polymer (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 857–867. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Wan, P.; Ren, Z.; Yan, S. Anisotropic polyaniline/SWCNT composite films prepared by in situ electropolymerization on highly oriented polyethylene for high-efficiency ammonia sensor. ACS Appl. Mater. Interfaces 2019, 11, 38169–38176. [Google Scholar] [CrossRef]
- Eising, M.; Cava, C.E.; Salvatierra, R.V.; Zarbin, A.J.G.; Roman, L.S. Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor. Sens. Actuators B 2017, 245, 25–33. [Google Scholar] [CrossRef]
- Gavgani, J.N.; Hasani, A.; Nouri, M.; Mahyari, M.; Salehi, A. Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature. Sens. Actuators B 2016, 229, 239–248. [Google Scholar] [CrossRef]
- Abdulla, S.; Mathew, T.L.; Pullithadathil, B. Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sens. Actuators B 2015, 221, 1523–1534. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, X.; Zhu, S.; Zhou, Z.; Yao, Y.; Quan, W.; Liu, B. Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuators B 2013, 178, 485–493. [Google Scholar] [CrossRef]
- Liu, C.; Tai, H.; Zhang, P.; Yuan, Z.; Du, X.; Xie, G. A high-performance flexible gas sensor based on self-assembled PNI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sens. Actuators B 2018, 261, 587–597. [Google Scholar] [CrossRef]
- Tai, H.; Jiang, Y.; Xie, G.; Yu, J.; Chen, X. Fabrication and gas sensitivity of polyaniline-titanium dioxide nanocomposite thin film. Sens. Actuators B 2007, 125, 644–650. [Google Scholar] [CrossRef]
- Bandgar, D.K.; Navale, S.T.; Mane, A.T.; Gupta, S.K.; Aswal, D.K.; Patil, V.B. Ammonia sensing properties of polyaniline/a-Fe2O3 hybrid nanocomposites. Synth. Met. 2015, 204, 1–9. [Google Scholar] [CrossRef]
- Wang, X.; Meng, S.; Tebyetekerwa, M.; Weng, W.; Pionteck, J.; Sun, B.; Qin, Z.; Zhu, M. Nanostructured polyaniline/poly(styrene-butadiene-styrene) composite fiber for use as highly sensitive and flexible ammonia sensor. Synth. Met. 2017, 233, 86–93. [Google Scholar] [CrossRef]
- Chen, S.; Sun, G. High Sensitivity Ammonia Sensor Using a Hierarchical Polyaniline/Poly(ethylene-co-glycidyl methacrylate) Nanofibrous Composite Membrane. ACS Appl. Mater. Interfaces 2013, 5, 6473–6477. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Dong, X.; Pang, Z.; Du, Y.; Xia, X.; Wei, Q.; Huang, F. Ammonia Sensing Behaviors of TiO2-PANI/PA6 Composite Nanofibers. Sensors 2012, 12, 17046–17057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merian, T.; Redon, N.; Zujobic, Z.; Stanisavljev, D.; Wojkiewicz, J.L.; Gizdavic-Nikolaidis, M. Ultra sensitive ammonia sensors based on microwave synthesized nanofibrillar polyanilines. Sens. Actuators B 2014, 203, 626–634. [Google Scholar] [CrossRef]
- Khuspe, G.D.; Bandgar, D.K.; Sen, S.; Patil, V.B. Fussy nanofibrous network of polyaniline (PANi) for NH3 detection. Synth. Met. 2012, 162, 1822. [Google Scholar] [CrossRef]
- Du, Z.; Li, C.; Li, L.; Yu, H.; Wang, Y.; Wang, T. Ammonia gas detection based on polyaniline nanofibers coated on interdigitated array electrodes. J. Mater. Sci. Mater. Electron. 2011, 22, 418–421. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Yan, X.; Xue, Q. NH3 and HCl sensing characteristics of polyaniline nanofibers deposited on commercial ceramic substrates using interfacial polymerization. Synth. Met. 2010, 160, 2452–2458. [Google Scholar] [CrossRef]
- Liu, M.-C.; Dai, C.-L.; Chan, C.-H.; Wu, C.-C. Manufacture of a Polyaniline Nanofiber Ammonia Sensor Integrated with a Readout Circuit Using the CMOS-MEMS Technique. Sensors 2009, 9, 869–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manigandan, S.; Jain, A.; Majumder, S.; Ganguly, S.; Kargupta, K. Formation of nanorods and nanoparticles of polyaniline using Langmuir Blodgett Technique: Performance study for ammonia sensor. Sens. Actuators B 2008, 133, 187–194. [Google Scholar] [CrossRef]
- Li, Y.; Gong, J.; He, G.; Deng, Y. Synthesis of polyaniline nanotubes using Mn2O3 nanofibers as oxidant and their ammonia sensing properties. Synth. Met. 2011, 161, 56–61. [Google Scholar] [CrossRef]
- Ngamna, O.; Morrin, A.; Killard, A.J.; Moulton, S.E.; Smyth, M.R.; Wallace, G.G. Inkjet printable polyaniline nanoformulations. Langmuir 2007, 23, 8569–8574. [Google Scholar] [CrossRef]
- Liu, C.-F.; Maruyama, T.; Yamamoto, T. Conductive Blends of p-Conjugated Polymers and Thermoplastic Polymers in Late Form. Polym. J. 1993, 25, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Wiersma, A.E.; vd Steeg, L.M.A.; Jongeling, T.J.M. Waterborne core-shell despersions based on Intrinsically Conducting Polymers for Coating Aplications. Synth. Met. 1995, 71, 2269–2270. [Google Scholar] [CrossRef]
- Lascelles, S.F.; Armes, S.P. Synthesis and characterization of micrometer-sized, polypyrrole-coated polystyrene latexes. J. Mater. Chem. 1977, 7, 1339–1347. [Google Scholar] [CrossRef]
- Perruchot, C.; Chehimi, M.M.; Delamar, M.; Lascelles, S.F.; Armes, S.P. Surface characterization of polypyrrole-coated polystyrene latex by X-ray photoelectron spectroscopy. Langmuir 1996, 12, 3245–3251. [Google Scholar] [CrossRef]
- Barthet, C.; Armes, S.P.; Lacelles, S.F.; Luk, S.Y.; Stanley, H.M.E. Synthesis and characterization of micrometer-sized, polyaniline-coated polystyrene latexes. Langmuir 1998, 14, 2032–2041. [Google Scholar] [CrossRef]
- Paine, A.J.; Luymes, W.; McNulty, J. Despersion Polymerization of Styrene in Polar Solvents. 6. Influenece of Reaction Parameters on Particle Size and Molecular Weight in Poly(N-vinylpyrrolidone)-Stabilized Reactions. Macromolecules 1990, 23, 3104–3109. [Google Scholar] [CrossRef]
- Paine, A.J. Dispersion Polymerization of Styrene in Polar Solvents. 7. A Simple Mechanistic Model to Predict Particle Size. Macromolecules 1990, 23, 3019–3117. [Google Scholar] [CrossRef]
- Abu, Y.M.; Aoki, K. Electrochemical properties of mono-particle-layer films of polyaniline-coated latex microspheres. J. Electroanal. Chem. 2004, 565, 219–225. [Google Scholar] [CrossRef]
- Aoki, K.; Lei, T. Electrochemical event of single redox latex particles. Langmuir 2000, 16, 10069–10075. [Google Scholar] [CrossRef]
- Li, S.; Wang, T.; Yang, Z.; He, J.; Wang, J.; Zhao, L.; Lu, H.; Tian, T.; Liu, F.; Sun, P.; et al. Room temperature high performance NH3 sensor based on GO-rambutan-like polyaniline hollow nanosphere hybrid assembled to flexible PET substrate. Sens. Actuators B 2018, 273, 726–734. [Google Scholar] [CrossRef]
- Luzny, W.; Banka, E. Relations between the structure and electric conductivity of polyaniline protonated with camphorsulfonic acid. Macromolecules 2000, 33, 425–429. [Google Scholar] [CrossRef]
- Yang, L.; Yang, L.; Wu, S.; Wei, F.; Hu, Y.; Xu, X.; Zhang, L. Three-dimensional conductive organic sulfonic acid co-doped bacterial cellulose/polyaniline nanocomposite films for detection of ammonia at room temperature. Sens. Actuators B 2020, 323, 128689. [Google Scholar] [CrossRef]
- Xu, Z.; Gao, Y.; Liu, T.; Wang, L.; Bian, S.; Lin, J. General and facile method to fabricate uniform Y2O3:Ln3+ (Ln3+ = Eu3+, Tb3+) hollow microspheres using polystyrene spheres as templates. J. Mater. Chem. 2012, 22, 21695–21703. [Google Scholar] [CrossRef]
- Li, T.; Qin, Z.; Liang, B.; Tian, F.; Zhao, J.; Liu, N.; Zhu, M. Morphology-dependent capacitive properties of three nanostructured polyanilines through interfacial polymerization in various acidic media. Electrochim. Acta 2015, 177, 343–351. [Google Scholar] [CrossRef]
- Erden, F.; Lai, S.C.; Chi, H.; Wang, F.; He, C. Tailoring the diameters of polyaniline nanofibers for sensor application. ACS Omega 2017, 2, 6506–6513. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.-W.; Liu, X.-X.; Diamond, D.; Lau, K.T. Humidity sensors based on polyaniline nanofibers. Sens. Actuators B 2010, 143, 530–534. [Google Scholar] [CrossRef]
- Li, S.; Diao, Y.; Yang, Z.; He, J.; Wang, J.; Liu, C.; Liu, F.; Lu, H.; Yan, X.; Sun, P.; et al. Enhanced room temperature gas sensor based on Au-loaded mesoporous In2O3 nanospheres@polyaniline core-shell nanohybrid assembled on flexible PET substrate for NH3 detection. Sens. Actuators B 2018, 276, 526–533. [Google Scholar] [CrossRef]
- Wang, H.; Nie, S.; Li, H.; Ali, R.; Fu, J.; Xiong, H.; Li, J.; Wu, Z.; Lau, W.-M.; Mahmood, N.; et al. 3D hollow quasi-graphite capsules/polyaniline hybrid with a high performance for room-temperature ammonia gas sensors. ACS Sens. 2019, 4, 2343–2350. [Google Scholar] [CrossRef]
- Li, X.; Xu, J.; Jian, Y.; He, Z.; Liu, B.; Xie, H.; Li, H.; Li, Z.; Wang, Y.; Tai, H. Toward agricultural ammonia volatilization monitoring: A flexible polyaniline/Ti3C2Tx hybrid sensitive films based gas sensor. Sens. Actuators B 2020, 316, 128144. [Google Scholar] [CrossRef]
- Wojkiewicz, J.L.; Bliznyuk, V.N.; Carquigny, S.; Elkamchi, N.; Redon, N.; Lasri, T.; Pud, A.A.; Reynaud, S. Nanostructured polyaniline-based composites for ppb range ammonia sensing. Sens. Actuators B 2011, 160, 1394–1403. [Google Scholar] [CrossRef]
- Fan, G.; Chen, D.; Li, T.; Yi, S.; Ji, H.; Wang, Y.; Zhang, Z.; Shao, G.; Fan, B.; Wang, H.; et al. Enhanced room-temperature ammonia-sensing properties of polyaniline-modified WO3 nanoplates derived via ultrasonic spray process. Sens. Actuators B 2020, 312, 127892. [Google Scholar] [CrossRef]
- Zhang, W.; Li, G.; Chen, Y.; Liu, S.; Xu, J.; Jing, C.; Zhang, J.; Yang, J.; Chen, Y.; Chu, J. Dynamic liquid phase deposition of doped nanostructured PANI tube sensor for trace-level NH3 gas detection. Sens. Actuators B 2020, 305, 127459. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Jiang, Y.; Duan, Z.; Liu, B.; Zhao, Q.; Wang, S.; Yuan, Z.; Tai, H. Ultrasensitive flexible NH3 gas sensor based on polyaniline/SrGeO9 nanocomposite with ppt-level detection ability at room temperature. Sens. Actuators B 2020, 319, 128293. [Google Scholar] [CrossRef]
- Korent, A.; Soderznik, K.Z.; Sturm, S.; Rozman, K.Z.; Redon, N.; Wojkiewicz, J.-L.; Duc, C. Facile fabrication of an ammonia-gas sensor using electrochemically synthesized polyaniline on commercial screen-printed three-electrode systems. Sensors 2021, 21, 169. [Google Scholar]
- Yamada, S.; Kanno, J.; Miyauchi, M. Multi-sized sphere packing in containers: Optimization formula for obtaining the highest density with two different sized spheres. IPSJ Trans. Math. Modeling Appl. 2011, 4, 23–30. [Google Scholar] [CrossRef] [Green Version]
PSt | PANI-PSt | Thickness of PANI Shell Layer (nm) | |||
---|---|---|---|---|---|
Sample No. | AD (μm) | CV (%) | AD (μm) | CV (%) | |
1 | 1.4 | 3.4 | 1.9 | 6.3 | 250 |
2 | 2.0 | 1.4 | 2.5 | 3.5 | 250 |
3 | 3.1 | 7.2 | 3.6 | 10.7 | 250 |
4 | 4.1 | 6.9 | 4.5 | 9.0 | 200 |
Material | Features | Temp. (°C) | Humidity (% RH) | Conc. (ppm) | S (1) | S/Conc. (ppm−1) | LOD (ppb) | Ref. |
---|---|---|---|---|---|---|---|---|
PSt@PANI(4.5) | Core–shell | 30 | dry | 100 | 77 | 0.77 | 46 | This work |
PSt@PANI(1.9) | Core–shell | 30 | dry | 250 | 37 | 0.15 | This work | |
PSt@PANI(1.9) | Core–shell | 30 | 50 | 250 | 62 | 0.25 | This work | |
PVDF@PANI | Core–shell | 25 | 50 | 10 | 2 (2) | 0.20 | 100 | [48] |
In2O3@PANI | Core–shell | 20 | 50 | 100 | 46 | 0.46 | 500 | [45] |
GO/PANI | Hollow nanosphere | 20 | 25 | 100 | 32 | 0.32 | 50 | [38] |
WO3@PANI | Nanoplate | 25 | 40 | 100 | 34 | 0.34 | [49] | |
PANI/TiO2 | Tube | R.T. | dry | 100 | 17 (2) | 0.17 | [50] | |
PANI/Ti3C2Tx | Flexible | 20 | dry | 50 | 4.0 (2) | 0.08 | 25 | [47] |
PANI/cellulose | Nanofiber | R.T. | 45 | 100 | 6.1 | 0.06 | 200 | [40] |
PANI/SrGe4O9 | Nanocomposite | 25 | 60 | 10 | 3.1 (2) | 0.31 | 0.25 | [51] |
PANI on SPEs | Electrochemically deposited | 25 | 70 | 0.5 | 1.0 | 2.0 | 23 | [52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuguchi, M.; Nakamae, T.; Fujisada, R.; Shiba, S. A Highly Sensitive Ammonia Gas Sensor Using Micrometer-Sized Core–Shell-Type Spherical Polyaniline Particles. Sensors 2021, 21, 7522. https://doi.org/10.3390/s21227522
Matsuguchi M, Nakamae T, Fujisada R, Shiba S. A Highly Sensitive Ammonia Gas Sensor Using Micrometer-Sized Core–Shell-Type Spherical Polyaniline Particles. Sensors. 2021; 21(22):7522. https://doi.org/10.3390/s21227522
Chicago/Turabian StyleMatsuguchi, Masanobu, Tomoki Nakamae, Ryoya Fujisada, and Shunsuke Shiba. 2021. "A Highly Sensitive Ammonia Gas Sensor Using Micrometer-Sized Core–Shell-Type Spherical Polyaniline Particles" Sensors 21, no. 22: 7522. https://doi.org/10.3390/s21227522
APA StyleMatsuguchi, M., Nakamae, T., Fujisada, R., & Shiba, S. (2021). A Highly Sensitive Ammonia Gas Sensor Using Micrometer-Sized Core–Shell-Type Spherical Polyaniline Particles. Sensors, 21(22), 7522. https://doi.org/10.3390/s21227522