Radioluminescence Response of Ce-, Cu-, and Gd-Doped Silica Glasses for Dosimetry of Pulsed Electron Beams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tested Samples
2.2. Test Setup
2.3. Test Methodology
- 1
- Fix a constant electron bunch size and frequency in the accelerator;
- 2
- Start irradiation and keep on for circa 30 s, by irradiating until a fixed dose value;
- 3
- Save the collected trace from the oscilloscope containing RIL pulses from the 30 s of irradiation;
- 4
- Tune to a different electron bunch size and repeat.
2.4. Irradiation Facility, RADEF
3. Results and Discussion
3.1. Emission Spectra of the Samples
3.2. Sample Response to Varying Electron Pulse Sizes
3.2.1. Variations of Output Pulse Height
3.2.2. Variations of Pulse Area
3.2.3. Total Area of Traces with Many Pulses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Girard, S.; Capoen, B.; El Hamzaoui, H.; Bouazaoui, M.; Bouwmans, G.; Morana, A.; Di Francesca, D.; Boukenter, A.; Duhamel, O.; Paillet, P.; et al. Potential of Copper- and Cerium-Doped Optical Fiber Materials for Proton Beam Monitoring. IEEE Trans. Nucl. Sci. 2017, 64, 567–573. [Google Scholar] [CrossRef]
- Hoehr, C.; Morana, A.; Duhamel, O.; Capoen, B.; Trinczek, M.; Paillet, P.; Duzenli, C.; Bouazaoui, M.; Bouwmans, G.; Cassez, A.; et al. Novel Gd3+-doped silica-based optical fiber material for dosimetry in proton therapy. Sci. Rep. 2019, 9, 16376. [Google Scholar] [CrossRef] [PubMed]
- O’Keeffe, S.; McCarthy, D.; Woulfe, P.; Grattan, M.W.D.; Hounsell, A.R.; Sporea, D.; Mihai, L.; Vata, I.; Leen, G.; Lewis, E. A review of recent advances in optical fibre sensors for in vivo dosimetry during radiotherapy. Br. J. Radiol. 2015, 88, 20140702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Helou, N.; El Hamzaoui, H.; Capoen, B.; Bouwmans, G.; Cassez, A.; Ouerdane, Y.; Boukenter, A.; Girard, S.; Chadeyron, G.; Mahiou, R.; et al. Radioluminescence and optically stimulated luminescence responses of a cerium-doped sol-gel silica glass under X-ray beam irradiation. IEEE Trans. Nucl. Sci. 2018, 65, 1591–1597. [Google Scholar] [CrossRef]
- El Hamzaoui, H.; Capoen, B.; Al Helou, N.; Bouwmans, G.; Ouerdane, Y.; Boukenter, A.; Girard, S.; Marcandella, C.; Duhamel, O.; Chadeyron, G.; et al. Ce-activated sol-gel silica glasses for radiation dosimetry in harsh environment. Mater. Res. Express 2016, 3, 046201. [Google Scholar] [CrossRef]
- Chewpraditkul, W.; Shen, Y.; Chen, D.; Yu, B.; Prusa, P.; Nikl, M.; Beitlerova, A.; Wanarak, C. Luminescence and scintillation of Ce3+-doped high silica glass. Opt. Mater. 2012, 34, 1762–1766. [Google Scholar] [CrossRef]
- El Hamzaoui, H.; Bouwmans, G.; Capoen, B.; Cassez, A.; Habert, R.; Ouerdane, Y.; Girard, S.; Di Francesca, D.; Kerboub, N.; Morana, A.; et al. Gd3+-doped sol-gel silica glass for remote ionizing radiation dosimetry. OSA Contin. 2019, 2, 715–721. [Google Scholar] [CrossRef]
- He, J.; Wang, Y.; Steigenberger, S.; Macpherson, A.; Chiodini, N.; Brambilla, G. Intense ultraviolet photoluminescence at 314 nm in Gd3+-doped silica. In Proceedings of the Conference on Lasers and Electro-Optics: Applications and Technology 2016, Optical Society of America, San Jose, CA, USA, 14–19 May 2016; p. JTh2A.86. [Google Scholar] [CrossRef] [Green Version]
- El Hamzaoui, H.; Ouerdane, Y.; Bigot, L.; Bouwmans, G.; Capoen, B.; Boukenter, A.; Girard, S.; Bouazaoui, M. Sol-gel derived ionic copper-doped microstructured optical fiber: A potential selective ultraviolet radiation dosimeter. Opt. Express 2012, 20, 29751–29760. [Google Scholar] [CrossRef] [Green Version]
- Capoen, B.; El Hamzaoui, H.; Bouazaoui, M.; Ouerdane, Y.; Boukenter, A.; Girard, S.; Marcandella, C.; Duhamel, O. Sol-gel derived copper-doped silica glass as a sensitive material for X-ray beam dosimetry. Opt. Mater. 2016, 51, 104–109. [Google Scholar] [CrossRef]
- Borsella, E.; Dal Vecchio, A.; Garcìa, M.A.; Sada, C.; Gonella, F.; Polloni, R.; Quaranta, A.; van Wilderen, L.J.G.W. Copper doping of silicate glasses by the ion-exchange technique: A photoluminescence spectroscopy study. J. Appl. Phys. 2002, 91, 90–98. [Google Scholar] [CrossRef]
- O’Keeffe, S.; Zhao, W.; Sun, W.; Zhang, D.; Qin, Z.; Chen, Z.; Ma, Y.; Lewis, E. An Optical Fibre-Based Sensor for Real-Time Monitoring of Clinical Linear Accelerator Radiotherapy Delivery. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 5600108. [Google Scholar] [CrossRef] [Green Version]
- Abdul Rahman, A.T.; Nisbet, A.; Bradley, D.A. Dose-rate and the reciprocity law: TL response of Ge-doped SiO2 optical fibers at therapeutic radiation doses. Nucl. Inst. Meth. Phys. Res. A 2011, 652, 891–895. [Google Scholar] [CrossRef]
- Ghomeishi, M.; Amouzad Mahdiraji, G.; Mahamd Adikan, F.R.; Ung, N.M.; Bradley, D.A. Sensitive Fibre-Based Thermoluminescence Detectors for High Resolution In-Vivo Dosimetry. Sci. Rep. 2015, 5, 13309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benabdesselam, M.; Mady, F.; Girard, S.; Mebrouk, Y.; Duchez, J.B.; Gaillardin, M.; Paillet, P. Performance of Ge-Doped Optical Fiber as a Thermoluminescent Dosimeter. IEEE Trans. Nucl. Sci. 2013, 60, 4251–4256. [Google Scholar] [CrossRef]
- Huston, A.L.; Justus, B.L.; Falkenstein, P.L.; Miller, R.W.; Ning, H.; Altemus, R. Optically Stimulated Luminescent Glass Optical Fibre Dosemeter. Radiat. Prot. Dosim. 2002, 101, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Justus, B.L.; Falkenstein, P.; Huston, A.L.; Plazas, M.C.; Ning, H.; Miller, R.W. Gated fiber-optic-coupled detector for in vivo real-time radiation dosimetry. Appl. Opt. 2004, 43, 1663–1668. [Google Scholar] [CrossRef]
- El Hamzaoui, H.; Courthéoux, L.; Nguyen, V.N.; Berrier, E.; Favre, A.; Bigot, L.; Bouazaoui, M.; Capoen, B. From porous silica xerogels to bulk optical glasses: The control of densification. Mater. Chem. Phys. 2010, 121, 83–88. [Google Scholar] [CrossRef]
- El Hamzaoui, H.; Bouwmans, G.; Capoen, B.; Ouerdane, Y.; Chadeyron, G.; Mahiou, R.; Girard, S.; Boukenter, A.; Bouazaoui, M. Effects of densification atmosphere on optical properties of ionic copper-activated sol–gel silica glass: Towards an efficient radiation dosimeter. Mater. Res. Express 2014, 1, 026203. [Google Scholar] [CrossRef]
- Hamamatsu. Photosensor Modules H9305 Series; Hamamatsu Photonics K.K.: Iwata City, Japan, 2020; Available online: https://www.hamamatsu.com/resources/pdf/etd/H9305_TPMO1065E.pdf (accessed on 26 May 2021).
- Ocean Optics, Inc. USB2000+ Fiber Optic Spectrometer Installation and Operation Manual; 830 Douglas Ave.: Dunedin, FL, USA, 2010; Available online: https://www.oceaninsight.com/globalassets/catalog-blocks-and-images/manuals–instruction-old-logo/spectrometer/usb2000-operating-instructions1.pdf (accessed on 26 August 2021).
- Kettunen, H. Varian Clinac Linear Accelerator; University of Jyväskylä: Jyväskylän Yliopisto, Finland, 2020; Available online: https://www.jyu.fi/science/en/physics/research/infrastructures/research-instruments/miscellaneous-instruments/clinac (accessed on 19 March 2021).
- IBA. DETECTORS For Relative and Absolute Dosimetry—Ionization Chambers and Diode Detectors; IBA Dosimetry GmbH: Schwarzenbruck, Germany, 2018; Available online: https://www.iba-dosimetry.com/fileadmin/user_upload/products/02_radiation_therapy/_Detectors/Detectors-RD-_-AD_Rev.3_0718_E.pdf (accessed on 1 October 2020).
- Al Helou, N.; El Hamzaoui, H.; Capoen, B.; Bouwmans, G.; Cassez, A.; Ouerdane, Y.; Boukenter, A.; Girard, S.; Bouazaoui, M. Optical responses of a copper-activated sol-gel silica glass under low-dose and low-dose rate X-ray exposures. OSA Contin. 2019, 2, 563–571. [Google Scholar] [CrossRef]
- Beddar, A.S.; Mackie, T.R.; Attix, F.H. Cerenkov light generated in optical fibres and other light pipes irradiated by electron beams. Phys. Med. Biol. 1992, 37, 925–935. [Google Scholar] [CrossRef]
- Di Martino, D.; Chiodini, N.; Fasoli, M.; Moretti, F.; Vedda, A.; Baraldi, A.; Buffagni, E.; Capelletti, R.; Mazzera, M.; Nikl, M.; et al. Gd-incorporation and luminescence properties in sol–gel silica glasses. J. Non-Cryst. Sol. 2008, 354, 3817–3823. [Google Scholar] [CrossRef]
- Chiodini, N.; Fasoli, M.; Martini, M.; Rosetta, E.; Spinolo, G.; Vedda, A.; Nikl, M.; Solovieva, N.; Baraldi, A.; Capelletti, R. High-efficiency SiO2:Ce3+ glass scintillators. Appl. Phys. Lett. 2002, 81, 4374. [Google Scholar] [CrossRef]
Sample | Dopant | Dopant Concentration (wt%) |
---|---|---|
Ce-rod | Ce | 0.07 |
Cu-rod | Cu | 0.07 |
Gd-rod | Gd | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Söderström, D.; Kettunen, H.; Morana, A.; Javanainen, A.; Ouerdane, Y.; El Hamzaoui, H.; Capoen, B.; Bouwmans, G.; Bouazaoui, M.; Girard, S. Radioluminescence Response of Ce-, Cu-, and Gd-Doped Silica Glasses for Dosimetry of Pulsed Electron Beams. Sensors 2021, 21, 7523. https://doi.org/10.3390/s21227523
Söderström D, Kettunen H, Morana A, Javanainen A, Ouerdane Y, El Hamzaoui H, Capoen B, Bouwmans G, Bouazaoui M, Girard S. Radioluminescence Response of Ce-, Cu-, and Gd-Doped Silica Glasses for Dosimetry of Pulsed Electron Beams. Sensors. 2021; 21(22):7523. https://doi.org/10.3390/s21227523
Chicago/Turabian StyleSöderström, Daniel, Heikki Kettunen, Adriana Morana, Arto Javanainen, Youcef Ouerdane, Hicham El Hamzaoui, Bruno Capoen, Géraud Bouwmans, Mohamed Bouazaoui, and Sylvain Girard. 2021. "Radioluminescence Response of Ce-, Cu-, and Gd-Doped Silica Glasses for Dosimetry of Pulsed Electron Beams" Sensors 21, no. 22: 7523. https://doi.org/10.3390/s21227523
APA StyleSöderström, D., Kettunen, H., Morana, A., Javanainen, A., Ouerdane, Y., El Hamzaoui, H., Capoen, B., Bouwmans, G., Bouazaoui, M., & Girard, S. (2021). Radioluminescence Response of Ce-, Cu-, and Gd-Doped Silica Glasses for Dosimetry of Pulsed Electron Beams. Sensors, 21(22), 7523. https://doi.org/10.3390/s21227523