Medical Range Radiation Dosimeter Based on Polymer-Embedded Fiber Bragg Gratings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theory
2.2. FBG-Based Sensor
2.3. Temperature Correction
2.4. Experimental Setup
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joe, H.E.; Yun, H.; Jo, S.H.; Jun, M.B.; Min, B.K. A review on optical fiber sensors for environmental monitoring. Int. J. Precis. Eng. Manuf. 2018, 5, 173–191. [Google Scholar] [CrossRef]
- Campanella, C.E.; Cuccovillo, A.; Campanella, C.; Yurt, A.; Passaro, V.M.N. Fibre Bragg Grating Based Strain Sensors: Review of Technology and Applications. Sensors 2018, 18, 3115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihailov, S.J. Fiber Bragg Grating Sensors for Harsh Environments. Sensors 2012, 12, 1898–1918. [Google Scholar] [CrossRef] [PubMed]
- Habisreuther, T.; Hailemichael, E.; Ecke, W.; Latka, I.; Schroder, K.; Chojetzki, C.; Schuster, K.; Rothhardt, M.; Willsch, R. ORMOCER Coated Fiber-Optic Bragg Grating Sensors at Cryogenic Temperatures. IEEE Sens. J. 2012, 12, 13–16. [Google Scholar] [CrossRef]
- Fernandez Fernandez, A.; Brichard, B.; Berghmans, F.; Decreton, M. Dose-rate dependencies in gamma-irradiated fiber Bragg grating filters. IEEE Trans. Nucl. Sci. 2002, 49, 2874–2878. [Google Scholar] [CrossRef] [Green Version]
- Girard, S.; Alessi, A.; Richard, N.; Martin-Samos, L.; De Michele, V.; Giacomazzi, L.; Agnello, S.; Francesca, D.D.; Morana, A.; Winkler, B.; et al. Overview of radiation induced point defects in silica-based optical fibers. Rev. Phys. 2019, 4, 100032. [Google Scholar] [CrossRef]
- Gusarov, A.; Berghmans, F.; Fernandez, A.F.; Deparis, O.; Defosse, Y.; Starodubov, D.; Decreton, M.; Mégret, P.; Bondel, M. Behavior of fibre Bragg gratings under high total dose gamma radiation. IEEE Trans. Nucl. Sci. 2000, 47, 688–692. [Google Scholar] [CrossRef] [Green Version]
- Henschel, H.; Hoeffgen, S.K.; Krebber, K.; Kuhnhenn, J.; Weinand, U. Influence of fiber composition and grating fabrication on the radiation sensitivity of fiber Bragg gratings. In Proceedings of the 9th European Conference on Radiation and Its Effects on Components and Systems, Deauville, France, 10–14 September 2007; pp. 1–8. [Google Scholar]
- Girard, S.; Morana, A.; Ladaci, A.; Robin, T.; Mescia, L.; Bonnefois, J.J.; Boutillier, M.; Mekki, J.; Paveau, A.; Cadier, B.; et al. Recent advances in radiation-hardened fiber-based technologies for space applications. J. Opt. 2018, 20, 093001. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Ma, L.; Jiang, S.; He, Z. Effect of kGy dose level gamma radiation on Ge-doped FBGs and femtosecond-laser-inscribed pure-silica-core FBGs. In Proceedings of the 16th International Conference on Optical Communications and Networks (ICOCN), Wuzhen, China, 7–10 August 2017; pp. 1–3. [Google Scholar]
- Gusarov, A.; Chojetzki, C.; Mckenzie, I.; Thienpont, H.; Berghmans, F. Effect of the Fiber Coating on the Radiation Sensitivity of Type I FBGs. IEEE Photonics Technol. Lett. 2008, 20, 1802–1804. [Google Scholar] [CrossRef]
- Beddar, S.; Beaulieu, L. Scintillation Dosimetry, 1st ed.; CRC Press: New York, NY, USA, 2016; p. 295. [Google Scholar]
- O’Keeffe, S.; McCarthy, D.; Woulfe, P.; Grattan, M.; Hounsell, A.; Sporea, D.; Mihai, L.; Vata, I.; Leen, G.; Lewis, E. A review of recent advances in optical fibre sensors for in vivo dosimetry during radiotherapy. Br. J. Radiol. Suppl. 2015, 88, 20140702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avino, S.; D’Avino, V.; Giorgini, A.; Pacelli, R.; Liuzzi, R.; Cella, L.; De Natale, P.; Gagliardi, G. Detecting ionizing radiation with optical fibers down to biomedical doses. Appl. Phys. Lett. 2013, 103, 184102. [Google Scholar] [CrossRef]
- Avino, S.; D’Avino, V.; Giorgini, A.; Pacelli, R.; Liuzzi, R.; Cella, L.; Gagliardi, G.; De Natale, P. Radiation dosimetry with fiber Bragg gratings. In Proceedings of the 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2–6 June 2014; p. 91574L. [Google Scholar]
- McGuinness, F.; O’Keeffe, S.; Dooly, G.; Duraibabu, D.; Woulfe, P.; Leen, G. Use of an Optical Fibre based Temperature Sensor for Radiotherapy Dosimetry. In Proceedings of the 30th Irish Signals and Systems Conference (ISSC), Maynooth, Ireland, 17–18 June 2019; pp. 1–5. [Google Scholar]
- Allil, R.C.; de Nazaré, F.V.; Werneck, M.M.M. Fiber Bragg Gratings: Theory, Fabrication, and Applications, 1st ed.; SPIE Press: Bellingham, DC, USA, 2017; p. 29. [Google Scholar]
- Sridhar, S.; Sebastian, S.; Asokan, S. Temperature sensor based on multi-layer MoS 2 coated etched fiber Bragg grating. App. Opt. 2019, 58, 535. [Google Scholar] [CrossRef] [PubMed]
- Habel, J.; Boilard, T.; Frenière, J.S.; Trépanier, F.; Bernier, M. Femtosecond FBG Written through the Coating for Sensing Applications. Sensors 2017, 17, 2519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baur, E.; Osswald, T.A.; Rudolph, N. Plastics Handbook: The Resource for Plastics Engineers, 5th ed.; Carl Hanser Verlag GmbH & Co. KG: München, Germany, 2019; pp. 1–663. [Google Scholar]
- Seuntjens, J.; Duane, S. Photon absorbed dose standards. Metrologia 2009, 46, S39. [Google Scholar] [CrossRef]
- Arora, A.; Esmaeelpour, M.; Bernier, M.; Digonnet, M.J. High-resolution slow-light fiber Bragg grating temperature sensor with phase-sensitive detection. Opt. Lett. 2018, 43, 3337–3340. [Google Scholar] [CrossRef] [PubMed]
Designation | Fiber Name (Manufacturer) | Description |
---|---|---|
SC | Super RadHard SMF (DrakaElite) | Acrylate-coated 8/125/242 pure silica core fiber with extremely low sensitivity to radiation |
LGE | BF04446 (OFS) | Standard polyimide-coated 9/125/155 germanium-doped optical fiber |
HGE | BF06160-02 (OFS) | Polyimide-coated 4.6/125/155 optical fiber with a higher germanium concentration than LGE |
HAF | HAF-CMS (CorActive) | 8/125 cobalt-doped fiber with an attenuation of 10 dB/cm, uncoated |
Designation | Material | c | ||
---|---|---|---|---|
C | J/kg C | MPa | ||
PP | Polypropylene | 120 | 2000 | 1000 |
PMMA | Polymethyl methacrylate | 60 | 1470 | 3200 |
PC | Polycarbonate | 65 | 1700 | 2400 |
PEEK | Polyether ether ketone | 55 | 2200 | 3600 |
Fiber | Dose Response |
---|---|
pm/Gy | |
LGE | 0.060 ± 0.004 |
HGE | 0.060 ± 0.003 |
SC | 0.061 ± 0.002 |
HAF | 0.06 ± 0.01 |
Plastic Coating | Dose Response |
---|---|
pm/Gy | |
PP | 0.087 ± 0.001 |
PMMA | 0.066 ± 0.003 |
PC | 0.060 ± 0.005 |
PEEK | 0.056 ± 0.006 |
NONE | −0.001 ± 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebel-Cormier, M.-A.; Boilard, T.; Bernier, M.; Beaulieu, L. Medical Range Radiation Dosimeter Based on Polymer-Embedded Fiber Bragg Gratings. Sensors 2021, 21, 8139. https://doi.org/10.3390/s21238139
Lebel-Cormier M-A, Boilard T, Bernier M, Beaulieu L. Medical Range Radiation Dosimeter Based on Polymer-Embedded Fiber Bragg Gratings. Sensors. 2021; 21(23):8139. https://doi.org/10.3390/s21238139
Chicago/Turabian StyleLebel-Cormier, Marie-Anne, Tommy Boilard, Martin Bernier, and Luc Beaulieu. 2021. "Medical Range Radiation Dosimeter Based on Polymer-Embedded Fiber Bragg Gratings" Sensors 21, no. 23: 8139. https://doi.org/10.3390/s21238139
APA StyleLebel-Cormier, M. -A., Boilard, T., Bernier, M., & Beaulieu, L. (2021). Medical Range Radiation Dosimeter Based on Polymer-Embedded Fiber Bragg Gratings. Sensors, 21(23), 8139. https://doi.org/10.3390/s21238139