Estimating Resting HRV during fMRI: A Comparison between Laboratory and Scanner Environment
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Laboratory Measurement Protocol
2.3. MRI Measurement Protocol
2.4. Data Acquisition and Preprocessing
2.5. Signal Preprocessing
2.6. Estimation of Heart Rate Variability (HRV)
2.7. Comparison of HRV Estimates
2.7.1. Comparison of HRV Derived from ECG and PPG
2.7.2. Comparison of HRV Recorded in the Autonomic Laboratory and during fMRI
2.7.3. The Effect of Habituation and Anxiety Ratings on HRV Estimated during fMRI
3. Results
3.1. Comparison of HRV Derived from ECG and PPG
3.2. Comparison of HRV Recorded in the Autonomic Laboratory and during fMRI
3.3. The Effect of Habituation and Anxiety Ratings on HRV Estimated during fMRI
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thayer, J.F.; Lane, R.D. The role of vagal function in the risk for cardiovascular disease and mortality. Biol. Psychol. 2007, 74, 224–242. [Google Scholar] [CrossRef]
- Hillebrand, S.; Gast, K.B.; De Mutsert, R.; Swenne, C.A.; Jukema, J.W.; Middeldorp, S.; Rosendaal, F.R.; Dekkers, O.M. Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: Meta-analysis and dose-response meta-regression. Europace 2013, 15, 742–749. [Google Scholar] [CrossRef]
- Kemp, A.H.; Quintana, D.S. The relationship between mental and physical health: Insights from the study of heart rate variability. Int. J. Psychophysiol. 2013, 89, 288–296. [Google Scholar] [CrossRef]
- Thayer, J.F.; Hansen, A.L.; Saus-Rose, E.; Johnsen, B.H. Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Ann. Behav. Med. 2009, 37, 141–153. [Google Scholar] [CrossRef]
- Hansen, A.L.; Johnsen, B.H.; Thayer, J.F. Vagal influence on working memory and attention. Int. J. Psychophysiol. 2003, 48, 263–274. [Google Scholar] [CrossRef]
- Mulcahy, J.S.; Larsson, D.E.O.; Garfinkel, S.N.; Critchley, H.D. Heart rate variability as a biomarker in health and affective disorders: A perspective on neuroimaging studies. Neuroimage 2019, 202, 116072. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.F.; Åhs, F.; Fredrikson, M.; Sollers, J.J.; Wager, T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012, 36, 747–756. [Google Scholar] [CrossRef]
- Koenig, J.; Abler, B.; Agartz, I.; Åkerstedt, T.; Andreassen, O.A.; Anthony, M.; Bär, K.J.; Bertsch, K.; Brown, R.C.; Brunner, R.; et al. Cortical thickness and resting-state cardiac function across the lifespan: A cross-sectional pooled mega-analysis. Psychophysiology 2020, 58, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.J.; Thayer, J.F.; Greening, S.; Lee, T.-H.; Ponzio, A.; Min, J.; Sakaki, M.; Nga, L.; Mather, M.; Koenig, J. Brain structural concomitants of resting state heart rate variability in the young and old: Evidence from two independent samples. Brain Struct. Funct. 2017, 223, 727–737. [Google Scholar] [CrossRef] [Green Version]
- Winkelmann, T.; Thayer, J.F.; Pohlack, S.; Nees, F.; Grimm, O.; Flor, H. Structural brain correlates of heart rate variability in a healthy young adult population. Brain Struct. Funct. 2017, 222, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- de la Cruz, F.; Schumann, A.; Köhler, S.; Reichenbach, J.R.; Wagner, G.; Bär, K.J. The relationship between heart rate and functional connectivity of brain regions involved in autonomic control. Neuroimage 2019, 196, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Kumral, D.; Schaare, H.L.; Beyer, F.; Reinelt, J.; Uhlig, M.; Liem, F.; Lampe, L.; Babayan, A.; Reiter, A.; Erbey, M.; et al. The age-dependent relationship between resting heart rate variability and functional brain connectivity. Neuroimage 2019, 15, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Sakaki, M.; Yoo, H.; Nga, L.; Lee, T.; Thayer, J.; Mather, M. Heart rate variability is associated with amygdala functional connectivity with MPFC across younger and older adults. Neuroimage 2016, 139, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Beissner, F.; Meissner, K.; Bär, K.-J.; Napadow, V. The Autonomic Brain: An Activation Likelihood Estimation Meta-Analysis for Central Processing of Autonomic Function. J. Neurosci. 2013, 33, 10503–10511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoemaker, J.K.; Norton, K.N.; Baker, J.; Luchyshyn, T. Forebrain organization for autonomic cardiovascular control. Auton. Neurosci. Basic Clin. 2015, 188, 5–9. [Google Scholar] [CrossRef]
- Benarroch, E.E. The Central Autonomic Network: Functional Organization, Dysfunction, and Perspective. Mayo Clin. Proc. 1993, 68, 988–1001. [Google Scholar] [CrossRef]
- Sandercock, G.R.H.; Bromley, P.D.; Brodie, D.A. The reliability of short-term measurements of heart rate variability. Int. J. Cardiol. 2005, 103, 238–247. [Google Scholar] [CrossRef]
- Weiner, O.M.; McGrath, J.J. Test-Retest Reliability of Pediatric Heart Rate Variability: A Meta-Analysis. J. Psychophysiol. 2017, 31, 6–28. [Google Scholar] [CrossRef] [Green Version]
- Marks, B.L.; Lightfoot, J.T. Reproducibility of Resting Heart Rate Variability With Short Sampling Periods. Can. J. Appl. Physiol. 1999, 24, 337–348. [Google Scholar] [CrossRef]
- Felblinger, J.; Slotboom, J.; Kreis, R.; Jung, B.; Boesch, C. Restoration of electrophysiological signals distorted by inductive effects of magnetic field gradients during MR sequences. Magn. Reson. Med. 1999, 41, 715–721. [Google Scholar] [CrossRef]
- Gil, E.; Orini, M.; Bailón, R.; Vergara, J.M.; Mainardi, L.; Laguna, P. Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions. Physiol. Meas. 2010, 31, 1271–1290. [Google Scholar] [CrossRef] [PubMed]
- Weinschenk, S.W.; Beise, R.D.; Lorenz, J. Heart rate variability (HRV) in deep breathing tests and 5-min short-term recordings: Agreement of ear photoplethysmography with ECG measurements, in 343 subjects. Eur. J. Appl. Physiol. 2016, 116, 1527–1535. [Google Scholar] [CrossRef] [PubMed]
- Antali, F.; Kulin, D.; Lucz, K.I.; Szabó, B.; Szűcs, L.; Kulin, S.; Miklós, Z. Multimodal assessment of the pulse rate variability analysis module of a photoplethysmography-based telemedicine system. Sensors 2021, 21, 5544. [Google Scholar] [CrossRef]
- Schäfer, A.; Vagedes, J. How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram. Int. J. Cardiol. 2013, 166, 15–29. [Google Scholar] [CrossRef]
- Yuda, E.; Shibata, M.; Ogata, Y.; Ueda, N.; Yambe, T.; Yoshizawa, M.; Hayano, J. Pulse rate variability: A new biomarker, not a surrogate for heart rate variability. J. Physiol. Anthropol. 2020, 39, 21. [Google Scholar] [CrossRef]
- Jan, H.; Chen, M.-F.; Fu, T.; Lin, W.; Tsai, C.-L.; Lin, K. Evaluation of Coherence Between ECG and PPG Derived Parameters on Heart Rate Variability and Respiration in Healthy Volunteers With / Without Controlled Breathing. J. Med. Biol. Eng. 2019, 39, 783–795. [Google Scholar] [CrossRef] [Green Version]
- Castaldo, R.; Melillo, P.; Bracale, U.; Caserta, M.; Triassi, M.; Pecchia, L. Acute mental stress assessment via short term HRV analysis in healthy adults: A systematic review with meta-analysis. Biomed. Signal Process. Control 2015, 18, 370–377. [Google Scholar] [CrossRef] [Green Version]
- McGlynn, F.D.; Smitherman, T.A.; Hammel, J.C.; Lazarte, A.A. Component fears of claustrophobia associated with mock magnetic resonance imaging. J. Anxiety Disord. 2007, 21, 367–380. [Google Scholar] [CrossRef]
- Chapman, H.A.; Bernier, D.; Rusak, B. MRI-related anxiety levels change within and between repeated scanning sessions. Psychiatry Res.-Neuroimaging 2010, 182, 160–164. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Schwerdtfeger, A.; Fink, D.; Brunner, C.; Aigner, C.S.; Brito, J.; Andrade, A. MRI-related anxiety in healthy individuals, intrinsic BOLD oscillations at 0.1 Hz in precentral gyrus and insula, and heart rate variability in low frequency bands. PLoS ONE 2018, 14, e0216731. [Google Scholar] [CrossRef] [Green Version]
- Spielberger, C.; Gorsuch, R.; Lushene, R.; Vagg, P.; Jacobs, G. Manual for the State-Trait Anxiety Inventory (Form Y1–Y2); Consulting Psychologists Press: Palo Alto, CA, USA, 1983; ISBN 1537-6591. [Google Scholar]
- Schumann, A.; Schulz, S.; Voss, A.; Scharbrodt, S.; Baumert, M.; Bär, K.J. Baroreflex coupling assessed by cross-compression entropy. Front. Physiol. 2017, 8, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vest, A.N.; Poian, G.D.; Li, Q.; Liu, C.; Nemati, S.; Shah, A.; Clifford, G.D. An Open Source Benchmarked Toolbox for Cardiovascular Waveform and Interval Analysis. Physiol. Meas. 2018, 39, 105004. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Clifford, G.D. Signal quality and data fusion for false alarm reduction in the intensive care unit. J. Electrocardiol. 2012, 45, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Wessel, N.; Voss, A.; Malberg, H.; Ziehmann, C.; Voss, H.U.; Schirdewan, A.; Meyerfeldt, U.; Kurths, J. Nonlinear analysis of complex phenomena in cardiological data. Herzschrittmachertherapie Elektrophysiologie 2000, 11, 159–173. [Google Scholar] [CrossRef]
- Malik, M.; Bigger, J.; Camm, A.; Kleiger, R. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef] [Green Version]
- Cipryan, L.; Litschmannova, M. Intra-day and inter-day reliability of heart rate variability measurement. J. Sports Sci. 2013, 31, 150–158. [Google Scholar] [CrossRef]
- Lord, S.W.; Senior, R.R.; Das, M.; Whittam, A.M.; Murray, A.; McComb, J.M. Low-frequency heart rate variability: Reproducibility in cardiac transplant recipients and normal subjects. Clin. Sci. 2001, 100, 43–46. [Google Scholar] [CrossRef]
- Farah, B.Q.; Lima, A.H.R.D.A.; Cavalcante, B.R.; de Oliveira, L.M.F.T.; Brito, A.L.D.S.; de Barros, M.V.G.; Ritti-Dias, R.M. Intra-individuals and inter- and intra-observer reliability of short-term heart rate variability in adolescents. Clin. Physiol. Funct. Imaging 2014, 36, 33–39. [Google Scholar] [CrossRef]
- Plaza-Florido, A.; Alcantara, J.M.A.; Migueles, J.H.; Amaro-Gahete, F.J.; Acosta, F.M.; Mora-Gonzalez, J.; Sacha, J.; Ortega, F.B. Inter- and intra-researcher reproducibility of heart rate variability parameters in three human cohorts. Sci. Rep. 2020, 10, 11399. [Google Scholar] [CrossRef]
- Constant, I.; Laude, D.; Murat, I.; Elghozi, J.L. Pulse rate variability is not a surrogate for heart rate variability. Clin. Sci. 1999, 97, 391–397. [Google Scholar] [CrossRef]
- Mejía-Mejía, E.; Budidha, K.; Abay, T.Y.; May, J.M.; Kyriacou, P.A. Heart Rate Variability (HRV) and Pulse Rate Variability (PRV) for the Assessment of Autonomic Responses. Front. Physiol. 2020, 11, 779. [Google Scholar] [CrossRef]
- Mejía-Mejía, E.; May, J.M.; Elgendi, M.; Kyriacou, P.A. Differential effects of the blood pressure state on pulse rate variability and heart rate variability in critically ill patients. NPJ Digit. Med. 2021, 4, 82. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavanga, M.; Heremans, E.; Moeyersons, J.; Bollen, B.; Jansen, K.; Ortibus, E.; Naulaers, G.; Van Huffel, S.; Caicedo, A. Maturation of the Autonomic Nervous System in Premature Infants: Estimating Development Based on Heart-Rate Variability Analysis. Front. Physiol. 2021, 11, 581250. [Google Scholar] [CrossRef] [PubMed]
Parameter | All Participants | Sample A | Sample B |
---|---|---|---|
Age [y] | 35 ± 14 | 38 ± 15 | 30 ± 10 |
BMI [kg/m2] | 24.6 ± 4.0 | 24.8 ± 4.4 | 24.4 ± 3.3 |
Male/Females | 36/43 | 24/31 | 12/12 |
Education levels | |||
8 years of school | 3 | 3 | 0 |
10 years of school | 12 | 11 | 1 |
12 years of school | 33 | 24 | 9 |
University degree | 20 | 16 | 4 |
Not disclosed | 11 | 1 | 10 |
Anxiety self-ratings | |||
STAI state | 35 ± 8 | 35 ± 8 | 39 ± 11 |
STAI trait | 35 ± 9 | 34 ± 8 | 43 ± 12 |
SAM quality | 1.8 ± 1.3 | 1.8 ± 1.4 | 1.7 ± 0.5 |
SAM intensity | 4.6 ± 2.1 | 4.7 ± 2.2 | 4.3 ± 1.4 |
HRV Index | LAB_ECG | LAB_PPG | Pearson r | MAE |
---|---|---|---|---|
HR [1/min] | 64.6 (57.7–72.3) | 64.9 (58.6–72.3) | 0.998 | 0.6 |
SDNN [ms] | 52.5 (38.4–67.6) | 52.5 (39.3–65.7) | 0.886 | 5.5 |
RMSSD [ms] | 34.6 (22.7–47.1) | 43.2 (28.9–52.7) | 0.877 | 9.1 |
HRV Index | LAB_ECG | LAB_PPG | MRI_PPG | ICC (95% CI) | CV [%] |
---|---|---|---|---|---|
HR [1/min] | 64.6 (57.7–72.3) | 64.9 (58.6–72.3) | 67.0 (58.7–76.5) | 0.882 (0.808,0.931) | 6 ± 5 |
SDNN [ms] | 52.5 (38.4–67.6) | 52.5 (39.3–65.7) | 52.3 (39.9–61.3) | 0.803 (0.681,0.883) | 18 ± 15 |
RMSSD [ms] | 34.6 (22.7–47.1) | 43.2 (28.9–52.7) | 42.9 (31.8–56.0) | 0.804 (0.678,0.885) | 30 ± 24 |
HRV Index | LAB_T0 | LAB_T1 | MRI_T0 | MRI_T1 | ICC (95% CI) | CV [%] |
---|---|---|---|---|---|---|
HR [1/min] | 67.0 (63.3–70.5) | 66.2 (62.8–70.6) | 68.8 (64.5–76.3) | 70.1 (65.7–74.7) | 0.796 (0.540,0.927) | 5 ± 3 |
SDNN [ms] | 54.5 (41.5–65.9) | 57.7 (44.1–65.2) | 51.9 (40.1–76.8) | 52.4 (36.7–77.5) | 0.846 (0.652,0.945) | 15 ± 10 |
RMSSD [ms] | 41.1 (33.3–55.8) | 46.7 (37.5–56.5) | 37.4 (27.5–50.0) | 33.8 (26.4–50.8) | 0.775 (0.492,0.919) | 23 ± 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schumann, A.; Suttkus, S.; Bär, K.-J. Estimating Resting HRV during fMRI: A Comparison between Laboratory and Scanner Environment. Sensors 2021, 21, 7663. https://doi.org/10.3390/s21227663
Schumann A, Suttkus S, Bär K-J. Estimating Resting HRV during fMRI: A Comparison between Laboratory and Scanner Environment. Sensors. 2021; 21(22):7663. https://doi.org/10.3390/s21227663
Chicago/Turabian StyleSchumann, Andy, Stefanie Suttkus, and Karl-Jürgen Bär. 2021. "Estimating Resting HRV during fMRI: A Comparison between Laboratory and Scanner Environment" Sensors 21, no. 22: 7663. https://doi.org/10.3390/s21227663
APA StyleSchumann, A., Suttkus, S., & Bär, K. -J. (2021). Estimating Resting HRV during fMRI: A Comparison between Laboratory and Scanner Environment. Sensors, 21(22), 7663. https://doi.org/10.3390/s21227663