Elements Influencing sEMG-Based Gesture Decoding: Muscle Fatigue, Forearm Angle and Acquisition Time
Abstract
:1. Introduction
2. Apparatus and Experiments
2.1. Apparatus
2.2. Muscle Selection
2.3. Forearm Angle
2.4. Gesture Selection
2.5. Experimental Setting
3. Methodology
3.1. Feature Extraction
- (1)
- Root Mean Square: RMS is the square root of the average power of the signal at a given time. This feature quantifies the effort of the muscle. RMS is defined as follows:
- (2)
- Waveform Length: WL is the measurement of the waveform amplitude, frequency and duration of the signal, which is an index to measure the complexity of the signal. WL is defined as follows:
- (3)
- Zero Crossing: ZC is the number of zero crossing at a given time period. ZC provides important information regarding the FD characteristics of the signal and is an important indicator of muscle fatigue. ZC is defined as follows:
- (4)
- Slope Sign Change: SSC is the number of times the slope of the measured waveform changes signs. It provides important information about the FD characteristics and is defined as follows:
3.2. Classification Model
3.2.1. LDA Classification Model
3.2.2. PNN Classification Model
3.3. Learning Framework
- (1)
- Influence of Muscle Fatigue (MF): Compare the effects of different muscle fatigue levels (normal or fatigue), same acquisition time and forearm angle on gesture decoding accuracy.
- (2)
- Influence of Forearm Angle (FA): Compare the effects of different forearm angles (30°, 45°, 75°), same muscle fatigue level and acquisition times on gesture decoding accuracy.
- (3)
- Influence of Acquisition Time (AT): Compare the effects of different acquisition times (), same muscle fatigue level and forearm angles on gesture decoding accuracy.
- (4)
- Influence of MF, FA and AT: Compare the effects of different muscle fatigue, forearm angle and acquisition time on gesture decoding accuracy.
4. Results and Discussions
4.1. Influence of Muscle Fatigue
4.2. Influence of Forearm Angle
4.3. Influence of Acquisition Time
4.4. Influence of MF, FA and AT
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohamed, A.K.; Marwala, T.; John, L.R. Single-trial EEG Discrimination between Wrist and Finger Movement Imagery and Execution in a Sensorimotor BCI. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011. [Google Scholar]
- Yanagisawa, T.; Hirata, M.; Saitoh, Y.; Kishima, H.; Matsushita, K.; Goto, T.; Fukuma, R.; Yokoi, H.; Kamitani, Y.; Yoshimine, T. Electrocorticographic control of a prosthetic arm in paralyzed patients. Ann. Neurol. 2012, 71, 353–361. [Google Scholar] [CrossRef]
- Xie, H.B.; Zheng, Y.P.; Guo, J.Y. Classification of the mechanomyogram signal using a wavelet packet transform and singular value decomposition for multifunction prosthesis control. Physiol. Meas. 2009, 30, 441–457. [Google Scholar] [CrossRef] [PubMed]
- Simao, M.; Mendes, N.; Gibaru, O.; Neto, P. A Review on Electromyography Decoding and Pattern Recognition for Human-Machine Interaction. IEEE Access 2019, 7, 39564–39582. [Google Scholar] [CrossRef]
- Jaramillo-Yánez, A.; Benalcázar, M.E.; Mena-Maldonado, E. Real-Time Hand Gesture decoding Using Surface Electromyography and Machine Learning: A Systematic Literature Review. Sensors 2020, 20, 2467. [Google Scholar] [CrossRef] [PubMed]
- Saponas, T.S.; Tan, D.S.; Dan, M.; Turner, J.; Landay, J.A. Making Muscle-Computer Interfaces More Practical. In Proceedings of the 28th International Conference on Human Factors in Computing Systems, CHI 2010, Atlanta, GA, USA, 10–15 April 2010. [Google Scholar]
- Wang, N.; Lao, K.; Zhang, X. Design and Myoelectric Control of an Anthropomorphic Prosthetic Hand. J. Bionic Eng. 2017, 14, 47–59. [Google Scholar] [CrossRef]
- Kwon, Y.; Dwivedi, A.; Mcdaid, A.J.; Liarokapis, M. Electromyography Based Decoding of Dexterous, In-Hand Manipulation of Objects: Comparing Task Execution in Real World and Virtual Reality. IEEE Access 2021, 9, 37297–37310. [Google Scholar] [CrossRef]
- Kiguchi, K.; Hayashi, Y. An EMG-Based Control for an Upper-Limb Power-Assist Exoskeleton Robot. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2012, 42, 1064–1071. [Google Scholar] [CrossRef]
- Li, C.; Li, G.; Jiang, G.; Chen, D.; Liu, H. Surface EMG data aggregation processing for intelligent prosthetic action recognition. Neural Comput. Appl. 2018, 32, 1–12. [Google Scholar] [CrossRef]
- Qi, J.; Jiang, G.; Li, G.; Sun, Y.; Tao, B. Surface EMG hand gesture recognition system based on PCA and GRNN. Neural Comput. Appl. 2020, 32, 6343–6351. [Google Scholar] [CrossRef]
- Dwivedi, A.; Kwon, Y.; Mcdaid, A.J.; Liarokapis, M. A Learning Scheme for EMG Based Decoding of Dexterous, In-Hand Manipulation Motions. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 2205–2215. [Google Scholar] [CrossRef]
- Kwon, Y.; Dwivedi, A.; Mcdaid, A.J.; Liarokapis, M. On Muscle Selection for EMG Based Decoding of Dexterous, In-Hand Manipulation Motions. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018. [Google Scholar]
- Liu, X.; Sacks, J.; Zhang, M.; Richardson, A.G.; Lucas, T.H.; der Spiegel, J.V. The Virtual Trackpad: An Electromyography-Based, Wireless, Real-Time, Low-Power, Embedded Hand-Gesture-Recognition System Using an Event-Driven Artificial Neural Network. IEEE Trans. Circuits Syst. II Express Briefs 2017, 64, 1257–1261. [Google Scholar] [CrossRef]
- Yang, J.; Pan, J.; Li, J. sEMG-based continuous hand gesture decoding using GMM-HMM and threshold model. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, China, 5–8 December 2017. [Google Scholar]
- Xiong, C.H.; Chen, W.R.; Sun, B.Y.; Liu, M.-J.; Yue, S.-G.; Chen, W.-B. Design and Implementation of an Anthropomorphic Hand for Replicating Human Grasping Functions. IEEE Trans. Robot. 2016, 32, 652–671. [Google Scholar] [CrossRef]
- Na, Y.; Choi, C.; Lee, H.D.; Kim, J. A Study on Estimation of Joint Force Through Isometric Index Finger Abduction With the Help of SEMG Peaks for Biomedical Applications. IEEE Trans. Cybern. 2017, 46, 2–8. [Google Scholar] [CrossRef]
- Min, H.; Chen, Z.; Fang, B.; Xia, Z.; Song, Y.; Wang, Z.; Zhou, Q.; Sun, F.; Liu, C. Cross-Individual Gesture decoding Based on Long Short-Term Memory Networks. Sci. Program. 2021, 2021, 6680417. [Google Scholar]
- Wang, Z.; Fang, Y.; Li, G.; Liu, H. Facilitate sEMG-Based Human–Machine Interaction Through Channel Optimization. Int. J. Humanoid Robot. 2019, 16, 797–809. [Google Scholar] [CrossRef]
- UCté-Allard Fall, C.L.; Drouin, A.; Campeau-Lecours, A.; Gosselin, C.; Glette, K.; Laviolette, F.; Gosselin, B. Deep Learning for Electromyographic Hand Gesture Signal Classification Using Transfer Learning. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 760–771. [Google Scholar]
- Adewuyi, A.A.; Hargrove, L.J.; Kuiken, T.A. An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 485–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sensinger, J.W.; Lock, B.A.; Kuiken, T.A. Adaptive Pattern Recognition of Myoelectric Signals: Exploration of Conceptual Framework and Practical Algorithms. IEEE Trans. Neural Syst. Rehabil. Eng. 2009, 17, 270–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Major, N.; Malinzak, M.D. Netter’s Correlative Imaging: Musculoskeletal Anatomy; Elsevier Health Science: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Cifrek, M.; Medved, V.; Tonkovi, S.; Ostojić, S. Surface EMG based muscle fatigue evaluation in biomechanics. Clin. Biomech. 2009, 24, 327–340. [Google Scholar] [CrossRef]
- Upper Limb Elbow Joint Angle Estimation Based on Electromyography Using Artificial Neural Network. In Proceedings of the South East Asian Technical University Consortium, Yogyakarta, Indonesia, 12–13 March 2018.
- Allard, U.C.; Nougarou, F.; Fall, C.L.; Giguère, P.; Gosselin, C.; Laviolette, F.; Gosselin, B. A convolutional neural network for robotic arm guidance using sEMG based frequency-features. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems, Daejeon, Korea, 9–14 October 2016. [Google Scholar]
- Xun, C.; Wang, Z.J. Pattern recognition of number gestures based on a wireless surface EMG system. Biomed. Signal Process. Control 2013, 8, 184–192. [Google Scholar]
- Villarejo, J.J.; Costa, R.M.; Bastos, T.; Frizera, A. Identification of low level sEMG signals for individual finger prosthesis. In Proceedings of the Biosignals and Biorobotics Conference (2014): Biosignals and Robotics for Better and Safer Living (BRC), 5th ISSNIP-IEEE, Salvador, Brazil, 26–28 May 2014. [Google Scholar]
- Chang, J.; Chablat, D.; Bennis, F.; Ma, L. Estimating the EMG Response Exclusively to Fatigue during Sustained Static Maximum Voluntary Contraction. In Advances in Physical Ergonomics and Human Factors; Springer: Cham, Switzerland, 2016; pp. 29–39. [Google Scholar]
- Hill, E.; Housh, T.; Smith, C.; Schmidt, R.; Johnson, G. Muscle- and Mode-Specific Responses of the Forearm Flexors to Fatiguing, Concentric Muscle Actions. Sports 2016, 4, 47. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.H.; Hargrove, L.J.; Lock, B.A.; Kuiken, T.A. Determining the optimal window length for pattern recognition-based myoelectric control: Balancing the competing effects of classification error and controller delay. IEEE Trans. Neural Syst. Rehabil. Eng. 2011, 19, 186–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyali, A.; Hashimoto, N. Spectral Collaborative Representation based Classification for Hand Gestures recognition on Electromyography Signals. Biomed. Signal Process. Control 2016, 24, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Oskoei, M.A.; Hu, H. Myoelectric control systems: A survey. Biomed. Signal Process. Control 2007, 2, 275–294. [Google Scholar] [CrossRef]
- Phinyomark, A.; Quaine, F.; Charbonnier, S.; Serviere, C.; Bernard, F.T.; Laurillau, Y. EMG feature evaluation for improving myoelectric pattern recognition robustness. Expert Syst. Appl. 2013, 40, 4832–4840. [Google Scholar] [CrossRef]
- Lorrain, T.; Ning, J.; Farina, D. Influence of the training set on the accuracy of surface EMG classification in dynamic contractions for the control of multifunction prostheses. J. Neuro Eng. Rehabil. 2011, 8, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tkach, D.; He, H.; Kuiken, T.A. Study of stability of time-domain features for electromyographic pattern recognition. J. Neuro Eng. Rehabil. 2010, 7, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwivedi, A.; Kwon, Y.; Mcdaid, A.J.; Liarokapis, M. EMG Based Decoding of Object Motion in Dexterous. In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, The Netherlands, 26–29 August 2018. [Google Scholar]
Gesture | RMS | FPM | ||
---|---|---|---|---|
Normal | Fatigue | Normal | Fatigue | |
HC | 182.23 | 252.05 | 90.35 | 65.45 |
HO | 168.33 | 227.97 | 95.36 | 82.63 |
WF | 71.61 | 118.07 | 132.28 | 65.70 |
WE | 87.10 | 118.75 | 137.46 | 105.80 |
UD | 116.77 | 141.20 | 94.69 | 76.93 |
RD | 200.10 | 229.87 | 119.02 | 103.70 |
TI | 80.76 | 109.14 | 124.95 | 75.34 |
TM | 138.16 | 172.96 | 84.46 | 59.37 |
TR | 111.89 | 104.92 | 76.07 | 51.34 |
TL | 154.70 | 132.99 | 99.48 | 94.76 |
FL | 138.62 | 108.16 | 86.60 | 98.89 |
FA (30°) | FA (45°) | FA (75°) | ||
---|---|---|---|---|
Day1 | Normal | A_a_30 | A_a_45 | A_a_75 |
Fatigue | A_b_30 | A_b_45 | A_b_75 | |
Day2 | Normal | B_a_30 | B_a_45 | B_a_75 |
Fatigue | B_b_30 | B_b_45 | B_b_75 | |
Day3 | Normal | C_a_30 | C_a_45 | C_a_75 |
Fatigue | C_b_30 | C_b_45 | C_b_75 |
Model | Subj.1 | Subj.2 | Subj.3 | Subj.4 | Subj.5 | |
---|---|---|---|---|---|---|
Class to Class | LDA | 0.6409 | 0.8109 | 0.7111 | 0.4123 | 0.5616 |
PNN | 0.4987 | 0.6057 | 0.6943 | 0.5313 | 0.5413 | |
Class to Class | LDA | 0.4884 | 0.8545 | 0.3950 | 0.6125 | 0.4910 |
PNN | 0.4402 | 0.6866 | 0.4828 | 0.4836 | 0.5880 | |
Class to Class | LDA | 0.5360 | 0.9183 | 0.6695 | 0.6302 | 0.6870 |
PNN | 0.6141 | 0.7128 | 0.7331 | 0.7391 | 0.6751 | |
Class to Class | LDA | 0.9255 | 0.5556 | 0.5789 | 0.5843 | 0.7746 |
PNN | 0.3734 | 0.5210 | 0.6684 | 0.6731 | 0.6448 |
Trend | Model | Subj.1 | Subj.2 | Subj.3 | Subj.4 | Subj.5 |
---|---|---|---|---|---|---|
30° as Validation dataset | LDA | 0.8437 | 0.8741 | 0.7607 | 0.7948 | 0.8622 |
PNN | 0.8273 | 0.8542 | 0.8206 | 0.7484 | 0.9582 | |
45° as Validation dataset | LDA | 0.5925 | 0.9974 | 0.9486 | 0.9368 | 0.7738 |
PNN | 0.6883 | 0.8715 | 0.9388 | 0.9458 | 0.8211 | |
75° as Validation dataset | LDA | 0.9536 | 0.9428 | 0.9797 | 0.7718 | 0.9981 |
PNN | 0.9147 | 0.9358 | 0.9486 | 0.7408 | 0.9429 |
Trend | Model | Subj.1 | Subj.2 | Subj.3 | Subj.4 | Subj.5 |
---|---|---|---|---|---|---|
day1 as Validation dataset | LDA | 0.9881 | 0.9995 | 0.9929 | 0.9815 | 0.9865 |
PNN | 0.9916 | 0.9996 | 0.9736 | 0.9697 | 0.9938 | |
day2 as Validation dataset | LDA | 0.9884 | 0.9837 | 0.9581 | 0.9772 | 0.9620 |
PNN | 0.8750 | 0.9627 | 0.9940 | 0.9812 | 0.9913 | |
day3 as Validation dataset | LDA | 0.9960 | 0.9987 | 0.9289 | 0.9996 | 0.9984 |
PNN | 0.9941 | 0.9960 | 0.9515 | 0.9907 | 0.9869 |
Model | AB_C (6 Models) | ||
1 | A_b_30 | B_a_45 | C_a_75 |
2 | A_a_30 | B_b_45 | C_b_75 |
3 | A_a_45 | B_b_75 | C_a_30 |
4 | A_b_45 | B_a_75 | C_b_30 |
5 | A_a_75 | B_a_30 | C_b_45 |
6 | A_b_75 | B_b_30 | C_a_45 |
Model | BC_A (6 Models) | ||
1 | B_b_30 | C_a_45 | A_a_75 |
2 | B_a_30 | C_b_45 | A_b_75 |
3 | B_a_45 | C_b_75 | A_a_30 |
4 | B_b_45 | C_a_75 | A_b_30 |
5 | B_a_75 | C_a_30 | A_b_45 |
6 | B_b_75 | C_b_30 | A_a_45 |
Model | CA_B (6 Models) | ||
1 | C_b_30 | A_a_45 | B_a_75 |
2 | C_a_30 | A_b_45 | B_b_75 |
3 | C_a_45 | A_b_75 | B_a_30 |
4 | C_b_45 | A_a_75 | B_b_30 |
5 | C_a_75 | A_b_30 | B_b_45 |
6 | C_b_75 | A_b_30 | B_a_45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qing, Z.; Lu, Z.; Cai, Y.; Wang, J. Elements Influencing sEMG-Based Gesture Decoding: Muscle Fatigue, Forearm Angle and Acquisition Time. Sensors 2021, 21, 7713. https://doi.org/10.3390/s21227713
Qing Z, Lu Z, Cai Y, Wang J. Elements Influencing sEMG-Based Gesture Decoding: Muscle Fatigue, Forearm Angle and Acquisition Time. Sensors. 2021; 21(22):7713. https://doi.org/10.3390/s21227713
Chicago/Turabian StyleQing, Zengyu, Zongxing Lu, Yingjie Cai, and Jing Wang. 2021. "Elements Influencing sEMG-Based Gesture Decoding: Muscle Fatigue, Forearm Angle and Acquisition Time" Sensors 21, no. 22: 7713. https://doi.org/10.3390/s21227713
APA StyleQing, Z., Lu, Z., Cai, Y., & Wang, J. (2021). Elements Influencing sEMG-Based Gesture Decoding: Muscle Fatigue, Forearm Angle and Acquisition Time. Sensors, 21(22), 7713. https://doi.org/10.3390/s21227713