Modeling Magnetostrictive Transducers for Structural Health Monitoring: Ultrasonic Guided Wave Generation and Reception
Abstract
:1. Introduction
2. Magnetostriction
3. Materials and Methods
3.1. Magnetostrictive Transducers for Ultrasonic Guided Waves
3.2. Finite Element Model Development
4. Results and Discussion
4.1. Effect of Individual MST Design Parameters on SH0 Mode Generation
4.2. Comparison between Single-Sided and Double-Sided MSTs
4.2.1. SH Wave MSTs
4.2.2. Lamb Wave MSTs
4.3. Reception Bandwidth of SH0 Wave MSTs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rose, J.L. Ultrasonic Guided Waves in Solid Media; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Lowe, M.J.S.; Alleyne, D.N.; Cawley, P. Defect detection in pipes using guided waves. Ultrasonics 1998, 36, 147–154. [Google Scholar] [CrossRef]
- Soorgee, M.H.; Lissenden, C.J.; Rose, J.L.; Yousefi-Koma, A. Planar shear horizontal guided wave inspection of a plate using piezoelectric fiber transducers. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2013; Volume 1511, pp. 223–229. [Google Scholar]
- Harb, M.; Yuan, F. Barely visible impact damage imaging using non-contact air-coupled transducer/laser Doppler vibrometer system. Struct. Health Monit. 2016, 16, 663–673. [Google Scholar] [CrossRef]
- Cho, Y. Estimation of ultrasonic guided wave mode conversion in a plate with thickness variation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2000, 47, 591–603. [Google Scholar] [PubMed]
- Nakamura, N.; Ogi, H.; Hirao, M.; Nakahata, K. Mode conversion behavior of SH guided wave in a tapered plate. NDT E Int. 2012, 45, 156–161. [Google Scholar]
- Aristégui, C.; Lowe, M.; Cawley, P. Guided waves in fluid-filled pipes surrounded by different fluids. Ultrasonics 2001, 39, 367–375. [Google Scholar] [CrossRef]
- Hakoda, C.; Lissenden, C.J. Application of a general expression for the group velocity vector of elastodynamic guided waves. J. Sound Vib. 2020, 469, 115165. [Google Scholar] [CrossRef]
- Giurgiutiu, V. Lamb wave generation with piezoelectric wafer active sensors for structural health monitoring. In Proceedings of the Smart Structures and Materials 2003: Smart Structures and Integrated Systems, San Diego, CA, USA, 2–6 March 2003; SPIE: Bellingham, WA, USA, 2003; Volume 5056, pp. 111–122. [Google Scholar]
- Kim, Y.; Gaul, T.; Köhler, B. Improved SH0 Guided Wave Transducers Based on Piezoelectric Fiber Patches. Sensors 2019, 19, 2990. [Google Scholar] [CrossRef] [Green Version]
- Ren, B.; Cho, H.; Lissenden, C.J. A Guided Wave Sensor Enabling Simultaneous Wavenumber-Frequency Analysis for Both Lamb and Shear-Horizontal Waves. Sensors 2017, 17, 488. [Google Scholar] [CrossRef] [Green Version]
- Tuzzeo, D.; Di Scalea, F.L. Noncontact air-coupled guided wave ultrasonics for detection of thinning defects in aluminum plates. Res. Nondestruct. Eval. 2001, 13, 61–77. [Google Scholar] [CrossRef]
- Chimenti, D. Review of air-coupled ultrasonic materials characterization. Ultrasonics 2014, 54, 1804–1816. [Google Scholar] [CrossRef]
- Khalili, P.; Cegla, F. Excitation of Single-Mode Shear-Horizontal Guided Waves and Evaluation of Their Sensitivity to Very Shallow Crack-Like Defects. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 818–828. [Google Scholar] [CrossRef]
- Kubrusly, A.C.; Freitas, M.A.; von der Weid, J.P.; Dixon, S. Mode selectivity of SH guided waves by dual excitation and reception applied to mode conversion analysis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 1239–1249. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Li, W.; Wang, J.; Wang, N.; Chen, X.; Song, G. Development of a Novel Guided Wave Generation System Using a Giant Magnetostrictive Actuator for Nondestructive Evaluation. Sensors 2018, 18, 779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herdovics, B.; Cegla, F. Long-term stability of guided wave electromagnetic acoustic transducer systems. Struct. Health Monit. 2018, 19, 3–11. [Google Scholar] [CrossRef]
- Hill, S.; Dixon, S.; Rajagopal, P.; Balasubramaniam, K. A new electromagnetic acoustic transducer design for generating torsional guided wave modes for pipe inspections. AIP Conf. Proc. 2017, 1806, 050003. [Google Scholar]
- Kim, H.; Jhang, K.; Shin, M.; Kim, J. A noncontact NDE method using a laser generated focused-Lamb wave with enhanced defect-detection ability and spatial resolution. NDT E Int. 2006, 39, 312–319. [Google Scholar] [CrossRef]
- Kim, T.; Chang, W.-Y.; Kim, H.; Jiang, X. Narrow band photoacoustic lamb wave generation for nondestructive testing using candle soot nanoparticle patches. Appl. Phys. Lett. 2019, 115, 102902. [Google Scholar] [CrossRef]
- Thompson, R.B. Physical Principles of Measurements with EMAT Transducers. In Ultrasonic Measurement Methods; Thurston, R.N., Pierce, A.D., Eds.; Academic Press: San Diego, CA, USA, 1990; Volume 19, pp. 157–200. [Google Scholar]
- Hirao, M.; Ogi, H. Electromagnetic Acoustic Transducers; Springer: Basingstoke, UK, 2017; Volume 20017. [Google Scholar]
- Guo, Z.; Achenbach, J.D.; Krishnaswamy, S. EMAT generation and laser detection of single lamb wave modes. Ultrasonics 1997, 35, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Lissenden, C.J.; Liu, Y.; Rose, J.L. Use of non-linear ultrasonic guided waves for early damage detection. Insight-Non-Destr. Test. Cond. Monit. 2015, 57, 206–211. [Google Scholar] [CrossRef]
- Lissenden, C.J. Nonlinear ultrasonic guided waves—Principles for nondestructive evaluation. J. Appl. Phys. 2021, 129, 021101. [Google Scholar] [CrossRef]
- Park, J.; Lee, J.; Min, J.; Cho, Y. Defects inspection in wires by nonlinear ultrasonic-guidedwave generated by electromagnetic sensors. Appl. Sci. 2020, 10, 4479. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Kwon, Y.E. Review of magnetostrictive patch transducers and applications in ultrasonic nondestructive testing of waveguides. Ultrasonics 2015, 62, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Vinogradov, S.; Cobb, A.; Light, G. Review of magnetostrictive transducers (MsT) utilizing reversed Wiedemann effect. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2017; Volume 1806, p. 20008. [Google Scholar]
- Miao, H.; Li, F. Shear horizontal wave transducers for structural health monitoring and nondestructive testing: A review. Ultrasonics 2021, 114, 106355. [Google Scholar] [CrossRef]
- Vinogradov, S.; Fisher, J.L. New magnetostrictive transducers and applications for SHM of pipes and vessels. Am. Soc. Mech. Eng. Press. Vessel. Pip. Div. PVP 2019, 5, 1–10. [Google Scholar]
- Vinogradov, S.; Cobb, A.; Fisher, J. New Magnetostrictive Transducer Designs for Emerging Application Areas of NDE. Materials 2018, 11, 755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livingston, J.D. Magnetomechanical properties of amorphous metals. Phys. Status Solidi 1982, 70, 591–596. [Google Scholar] [CrossRef]
- Saveliev, D.V.; Belyaeva, I.A.; Chashin, D.V.; Fetisov, L.Y.; Shamonin, M. Large Wiedemann effect in a magnetoactive elastomer. J. Magn. Magn. Mater. 2020, 511, 166969. [Google Scholar] [CrossRef]
- Glass, S.W.; Lareau, J.P.; Ross, K.S.; Ali, S.; Hernandez, F.; Lopez, B. Magnetostrictive cold spray sensor for harsh environment and long-term condition monitoring. AIP Conf. Proc. 2019, 2102, 020018. [Google Scholar]
- Reinhardt, B.; Daw, J.; Tittmann, B.R. Irradiation Testing of Piezoelectric (Aluminum Nitride, Zinc Oxide, and Bismuth Titanate) and Magnetostrictive Sensors (Remendur and Galfenol). IEEE Trans. Nucl. Sci. 2017, 65, 533–538. [Google Scholar] [CrossRef]
- Malyugin, D. On the theory of Wiedemann effects. J. Magn. Magn. Mater. 1991, 97, 193–197. [Google Scholar] [CrossRef]
- Dapino, M.J. On magnetostrictive materials and their use in adaptive structures. Struct. Eng. Mech. 2004, 17, 303–329. [Google Scholar] [CrossRef] [Green Version]
- Olabi, A.G.; Grunwald, A. Design and application of magnetostrictive materials. Mater. Des. 2008, 29, 469–483. [Google Scholar] [CrossRef] [Green Version]
- Kaltenbacher, M.; Meiler, M.; Ertl, M. Physical modeling and numerical computation of magnetostriction. COMPEL-Int. J. Comput. Math. Electr. Electron. Eng. 2009, 28, 819–832. [Google Scholar] [CrossRef]
- Besbes, M.; Ren, Z.; Razek, A. A generalized finite element model of magnetostriction phenomena. IEEE Trans. Magn. 2001, 37, 3324–3328. [Google Scholar] [CrossRef]
- Dapino, M.J.; Smith, R.C.; Faidley, L.E.; Flatau, A.B. Coupled structural-magnetic strain and stress model for magnetostrictive transducers. J. Intell. Mater. Syst. Struct. 2000, 11, 135–152. [Google Scholar] [CrossRef] [Green Version]
- De Jong, M.; Chen, W.; Geerlings, H.; Asta, M.; Persson, K.A. A database to enable discovery and design of piezoelectric materials. Sci. Data 2015, 2, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Zheng, X. A nonlinear constitutive model for magnetostrictive materials. Acta Mech. Sin. 2005, 21, 278–285. [Google Scholar] [CrossRef]
- Smith, I.R.; Overshott, K.J. The Wiedemann effect: A theoretical and experimental comparison. Br. J. Appl. Phys. 1965, 16, 1247–1250. [Google Scholar] [CrossRef]
- Yamamoto, M. Theory of the Wiedemann Effect. J. Phys. Soc. Jpn. 1958, 27, 88–98. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.; Xie, X.; Huang, W.; Weng, L.; Zhang, C. The output voltage model and experiment of magnetostrictive displacement sensor based on Weidemann effect. AIP Adv. 2018, 8, 056611. [Google Scholar] [CrossRef] [Green Version]
- Li, J.H.; Gao, X.X.; Zhu, J.; Bao, X.Q.; Cheng, L.; Xie, J.X. Wiedemann effect of Fe–Ga based magnetostrictive wires. Chin. Phys. B 2012, 21, 087501. [Google Scholar] [CrossRef]
- Choi, S.; Cho, H.; Lissenden, C.J. Selection of shear horizontal wave transducers for robotic nondestructive inspection in harsh environments. Sensors 2017, 17, 5. [Google Scholar] [CrossRef]
- Mori, K.; Horibe, T.; Maejima, K. Evaluation of the axial force in an FeCo bolt using the inverse magnetostrictive effect. Measurement 2020, 165, 108131. [Google Scholar] [CrossRef]
- Katabira, K.; Yoshida, Y.; Masuda, A.; Watanabe, A.; Narita, F. Fabrication of Fe–Co magnetostrictive fiber reinforced plastic composites and their sensor performance evaluation. Materials 2018, 11, 406. [Google Scholar] [CrossRef] [Green Version]
- Hakoda, C.; Lissenden, C.; Rose, J.L. Weak form implementation of the semi-analytical finite element (SAFE) method for a variety of elastodynamic waveguides. AIP Conf. Proc. 2018, 1949, 230001. [Google Scholar]
- Slaughter, J.C. Coupled structural and magnetic models: Linear magnetostriction in Comsol. In Proceedings of the COMSOL Conference, Boston, MA, USA, 8–10 October 2009. [Google Scholar]
- Kamioka, H. Elastic behaviour of salol during melting and solidification processes. Jpn. J. Appl. Phys. 1993, 32, 2216–2219. [Google Scholar] [CrossRef]
- Bunge, H.J. Three-dimensional texture analysis. Int. Mater. Rev. 1987, 32, 265–291. [Google Scholar] [CrossRef]
Case | Plate Length × Thick | FeCo Patch Length × Thick | Meander Coil Length × Thick | Excitation Signal Frequency, f (kHz) |
---|---|---|---|---|
P1 | 402 × 6 mm | 74 × 0.1 mm | 62 × 0.1 mm | 500 |
P2 | 563 | |||
P3 | 719 | |||
P4 | 922 | |||
P5 | 447 | |||
P6 | 520 | |||
P7 | 402 × 6 mm | 114.9 × 0.1 mm | 102.9 × 0.1 mm | 602 |
Component | Density (kg/m3) | Relative Permeability | Relative Permittivity | Electrical Conductivity (S/m) | Elastic Constants: E = Young’s Modulus ν = Poisson’s Ratio |
---|---|---|---|---|---|
Al plate | 2700 | 1 | 1 | 6 × 107 | E = 70 GPa ν = 0.33 |
FeCo patch * | 8000 | 38 | 1 | 1 × 106 | Ref. [49] |
Meander Coil | 2700 | 1 | 1 | 6 × 107 | E = 70 GPa ν = 0.33 |
Ti plate | 4420 | 1 | 1 | 7.4 × 105 | E = 113 GPa ν = 0.33 |
SS plate | 8027 | 1 | 1 | 1.35 × 106 | E = 195 GPa ν = 0.3 |
Salol [53] | 1230 | 1 | 1 | 100 | E = 3.49 GPa ν = 0.42 |
Air | - | 1 | 1 | 10 | - |
Preferential Mode | Single-Sided MST | Double-Sided MST | ||||
---|---|---|---|---|---|---|
u1 (nm) | u2 (nm) | u3 (nm) | u1 (nm) | u2 (nm) | u3 (nm) | |
SH1 | 0 | 1.23 | 0 | 0 | 2.88 | 0 |
A0 | 0.47 | 0 | 0.71 | 1 | 0 | 1.36 |
S0 | 0.34 | 0 | 0.65 | 0.58 | 0 | 1.09 |
S1 | 1.16 | 0 | 0.29 | 1.78 | 0 | 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sha, G.; Lissenden, C.J. Modeling Magnetostrictive Transducers for Structural Health Monitoring: Ultrasonic Guided Wave Generation and Reception. Sensors 2021, 21, 7971. https://doi.org/10.3390/s21237971
Sha G, Lissenden CJ. Modeling Magnetostrictive Transducers for Structural Health Monitoring: Ultrasonic Guided Wave Generation and Reception. Sensors. 2021; 21(23):7971. https://doi.org/10.3390/s21237971
Chicago/Turabian StyleSha, Gaofeng, and Cliff J. Lissenden. 2021. "Modeling Magnetostrictive Transducers for Structural Health Monitoring: Ultrasonic Guided Wave Generation and Reception" Sensors 21, no. 23: 7971. https://doi.org/10.3390/s21237971
APA StyleSha, G., & Lissenden, C. J. (2021). Modeling Magnetostrictive Transducers for Structural Health Monitoring: Ultrasonic Guided Wave Generation and Reception. Sensors, 21(23), 7971. https://doi.org/10.3390/s21237971