Short Range Pipe Guided Wave Testing Using SH0 Plane Wave Imaging for Improved Quantification Accuracy
Abstract
:1. Introduction
1.1. Synthetic Focusing Imaging Methods
1.2. Synthetic Focusing Imaging in Pipe Guided Wave Testing
2. Adaptation of Time Domain Synthetic Focusing Imaging Algorithms to Pipe Guided Wave Testing
2.1. PWI Adaptation to Pipe GWT
2.2. S0-Cancelling Guided Wave PWI Transduction Setup
2.3. TFM Adaptation to Pipe GWT
2.4. Guided Wave Full Matrix Capture Plane Wave Imaging (FMCPWI)
3. Methodology—Simulation Model and Experimental Setup
3.1. Simulation Study
3.2. Experimental Setup
4. Results and Discussion
4.1. Lateral Defect Sizing Comparison
4.2. SNR Comparison
4.3. PWI S0 Cancelling Transduction Setup
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Selection of Optimal Imaging Parameters
Appendix A.1. Transmission
Appendix A.2. Reception
Appendix A.3. Selection of Parameters
References
- Guided Ultrasonics. Available online: http://www.guided-ultrasonics.com/ (accessed on 18 March 2022).
- Alleyne, D.N.; Pavlakovic, B.; Lowe, M.; Cawley, P. The Use of Guided Waves for Rapid Screening of Chemical Plant Pipework. J. Korean Soc. Nondestruct. Test. 2002, 22, 589–598. [Google Scholar]
- Demma, A.; Cawley, P.; Lowe, M.J.S.; Roosenbrand, A.G.; Pavlakovic, B. The reflection of guided waves from notches in pipes: A guide for interpreting corrosion measurements. NDT E Int. 2004, 37, 167–180. [Google Scholar] [CrossRef]
- Davies, J.; Cawley, P. The Application of Synthetic Focusing for Imaging Crack-Like Defects in Pipelines Using Guided Waves Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 759–771. [Google Scholar] [CrossRef]
- Papaelias, M.P.; Roberts, C.; Davis, C.L. A review on non-destructive evaluation of rails: State-of-the-art and future development. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2008, 222, 367–384. [Google Scholar] [CrossRef]
- Reverdy, F.; Benoist, G.; Le Ber, L. Advantages and Complementarity of Phased-Array Technology and Total Focusing Method. In Proceedings of the 19th World Conference on Non-Destructive Testing, Munich, Germany, 13–17 June 2016. [Google Scholar]
- Wilcox, P.D. Ultrasonic Arrays in NDE: Beyond the B-scan. In Proceedings of the 39th Annual Review of Progress in Quantitative Nondestructive Evaluation AIP Conference Proceedings, Denver, CO, USA, 15–20 July 2012; Volume 1511, pp. 33–50. [Google Scholar] [CrossRef]
- Wilcox, P.D.; Holmes, C.; Drinkwater, B.W. Enhanced Defect Detection and Characterisation by Signal Processing of Ultrasonic Array Data. In Proceedings of the 9th European Conference on NDT, Berlin, Germany, 25–29 September 2006. [Google Scholar]
- Holmes, C.; Drinkwater, B.W.; Wilcox, P.D. Post-Processing of the Full Matrix of Ultrasonic Transmit–Receive Array Data for Non-Destructive Evaluation. NDT E Int. 2005, 38, 701–711. [Google Scholar] [CrossRef]
- Cheng, J.; Lu, J.-Y. Extended High-Frame Rate Imaging Method with Limited-Diffraction Beams. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 880–899. [Google Scholar] [CrossRef]
- Le Jeune, L.; Robert, S.; Lopez Villaverde, E.; Prada, C. Plane Wave Imaging for Ultrasonic Non-destructive Testing: Generalization to Multimodal Imaging. Ultrasonics 2016, 64, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Montaldo, G.; Tanter, M.; Bercoff, J.; Benech, N.; Fink, M. Coherent Plane-Wave Compounding for Very High Frame Rate Ultrasonography and Transient Elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 489–506. [Google Scholar] [CrossRef]
- Zhuang, Z.; Zhang, J.; Lian, G.; Drinkwater, B.W. Comparison of Time Domain and Frequency-Wavenumber Domain Ultrasonic Array Imaging Algorithms for Non-Destructive Evaluation. Sensors 2020, 20, 4951. [Google Scholar] [CrossRef]
- Sui, H.; Xu, P.; Huang, J.; Zhu, H. Space Optimized Plane Wave Imaging for Fast Ultrasonic Inspection with Small Active Aperture: Simulation and Experiment. Sensors 2020, 21, 55. [Google Scholar] [CrossRef]
- Cosarinsky, G.; Fernandez-Cruza, J.; Camacho, J. Plane Wave Imaging through Interfaces. Sensors 2021, 21, 4967. [Google Scholar] [CrossRef]
- Velichko, A.; Croxford, J. Strategies for Data Acquisition Using Ultrasonic Phased Arrays. Proc. R. Soc. Soc. 2018, 474, 20180451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, T.; Murase, M. Defect imaging with guided waves in a pipe. J. Acoust. Soc. Am. 2005, 117, 2134–2140. [Google Scholar] [CrossRef] [PubMed]
- Chiao, R.Y.; Thomas, L.J. Analytic Evaluation of Sampled Aperture Ultrasonic Imaging Techniques for NDE. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1994, 41, 484–493. [Google Scholar] [CrossRef]
- Davies, J.; Cawley, P. The Application of Synthetically Focused Imaging Techniques for High Resolution Guided Wave Pipe Inspection. AIP Conf. Proc. 2007, 894, 681–688. [Google Scholar]
- Davies, J.; Cawley, P.; Michael, L. Long Range Guided Wave Pipe Inspection—The Advantages of Focusing. In Proceedings of the 17th World Conference on Nondestructive Testing, Shanghai, China, 25–28 October 2008; pp. 1–6. [Google Scholar]
- Davies, J.S. Inspection of Pipes Using Low Frequency Focused Guided Waves. Ph.D. Thesis, Imperial College London, London, UK, 2008. [Google Scholar]
- Hunter, A.J.; Drinkwater, B.W.; Wilcox, P.D. The Wavenumber Algorithm for Full-Matrix Imaging Using an Ultrasonic Array. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 2450–2462. [Google Scholar] [CrossRef]
- Merabet, L.; Robert, S.; Prada, C. 2-D and 3-D Reconstruction Algorithms in the Fourier Domain for Plane-Wave Imaging in Nondestructive Testing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 66, 772–788. [Google Scholar] [CrossRef]
- Stepinski, T. An Implementation of Synthetic Aperture Focusing Technique in Frequency Domain. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 1399–1408. [Google Scholar] [CrossRef]
- Li, J.; Rose, J.L. Natural Beam Focusing of Non-axisymmetric Guided Waves in Large-diameter Pipes. Ultrasonics 2006, 44, 35–45. [Google Scholar] [CrossRef]
- Nishino, H.; Takashina, S.; Uchida, F.; Takemoto, M.; Ono, K. Modal Analysis of Hollow Cylindrical Guided Waves and Applications. Jpn. J. Appl. Phys. 2001, 40, 364–370. [Google Scholar] [CrossRef]
- Velichko, A.; Wilcox, P.D. Excitation and Scattering of Guided Waves: Relationships Between Solutions for Plates and Pipes. J. Acoust. Soc. Am. 2009, 125, 3623–3631. [Google Scholar] [CrossRef]
- Eddyfi Technologies. Available online: https://www.eddyfi.com/ (accessed on 18 March 2022).
- Alleyne, D.N.; Cawley, P. The Excitation of Lamb Waves in Pipes Using Dry-Coupled Piezoelectric Transducers. J. Nondestruct. Eval. 1996, 15, 11–20. [Google Scholar] [CrossRef]
- Velichko, A.; Wilcox, P.D. Post-processing of Guided Wave Array Data for High Resolution Pipe Inspection. J. Acoust. Soc. Am. 2009, 126, 2973–2982. [Google Scholar] [CrossRef] [PubMed]
- Perfetto, S.; Wilder, J.; Walther, D.B. Effects of Spatial Frequency Filtering Choices on the Perception of Filtered Images. Vision 2020, 4, 29. [Google Scholar] [CrossRef] [PubMed]
- Huthwaite, P. Accelerated finite element elastodynamic simulations using the GPU. J. Comput. Phys. 2014, 257, 687–707. [Google Scholar] [CrossRef] [Green Version]
- Pettit, J.R.; Walker, A.; Cawley, P.; Lowe, M.J.S. A Stiffness Reduction Method for Efficient Absorption of Waves at Boundaries for Use in Commercial Finite Element Codes. Ultrasonics 2014, 54, 1868–1879. [Google Scholar] [CrossRef]
- Alleyne, D.N.; Lowe, M.J.; Cawley, P. The Reflection of Guided Waves from Circumferential Notches in Pipes. J. Appl. Mech. 1998, 65, 635–641. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szlaszynski, F.; Lowe, M.J.S.; Huthwaite, P. Short Range Pipe Guided Wave Testing Using SH0 Plane Wave Imaging for Improved Quantification Accuracy. Sensors 2022, 22, 2973. https://doi.org/10.3390/s22082973
Szlaszynski F, Lowe MJS, Huthwaite P. Short Range Pipe Guided Wave Testing Using SH0 Plane Wave Imaging for Improved Quantification Accuracy. Sensors. 2022; 22(8):2973. https://doi.org/10.3390/s22082973
Chicago/Turabian StyleSzlaszynski, Filip, Michael J. S. Lowe, and Peter Huthwaite. 2022. "Short Range Pipe Guided Wave Testing Using SH0 Plane Wave Imaging for Improved Quantification Accuracy" Sensors 22, no. 8: 2973. https://doi.org/10.3390/s22082973
APA StyleSzlaszynski, F., Lowe, M. J. S., & Huthwaite, P. (2022). Short Range Pipe Guided Wave Testing Using SH0 Plane Wave Imaging for Improved Quantification Accuracy. Sensors, 22(8), 2973. https://doi.org/10.3390/s22082973