Reliability and Validity of Running Cadence and Stance Time Derived from Instrumented Wireless Earbuds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
2.3. Statistical Analysis
3. Results
3.1. Within-Method Reliability: Speed Conditions
3.2. Face Validity: Difference over Speed Conditions in Expected Direction
3.3. Between-Methods Agreement: Speed Conditions
3.4. Between Methods Agreement: Instructed Head-Movement Conditions
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kluitenberg, B.; Bredeweg, S.W.; Zijlstra, S.; Zijlstra, W.; Buist, I. Comparison of vertical ground reaction forces during overground and treadmill running. A validation study. BMC Musculoskelet. Disord. 2012, 13, 235. [Google Scholar] [CrossRef] [Green Version]
- Tesio, L.; Rota, V. Gait analysis on split-belt force treadmills: Validation of an instrument. Am. J. Phys. Med. Rehabil. 2008, 87, 515–526. [Google Scholar] [CrossRef] [PubMed]
- van Ingen Schenau, G.J. Some fundamental aspects of the biomechanics of overground versus treadmill locomotion. Med. Sci. Sports Exerc. 1980, 12, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.; Mata, T.; Mercer, J.A. Is the relationship between stride length, frequency, and velocity influenced by running on a treadmill or overground? Int. J. Exerc. Sci. 2017, 10, 1067–1075. [Google Scholar] [PubMed]
- Roerdink, M.; de Jonge, C.P.; Smid, L.M.; Daffertshofer, A. Tightening up the control of treadmill walking: Effects of maneuverability range and acoustic pacing on stride-to-stride fluctuations. Front. Physiol. 2019, 10, 257. [Google Scholar] [CrossRef] [PubMed]
- Benson, L.C.; Clermont, C.A.; Ferber, R. New considerations for collecting biomechanical data using wearable sensors: The effect of different running environments. Front. Bioeng. Biotechnol. 2020, 8, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alahakone, A.U.; Senanayake, S.M.N.A.; Senanayake, C.M. Smart wearable device for real time gait event detection during running. In Proceedings of the IEEE Asia-Pacific Conference on Circuits Systems, Kuala Lumpur, Malaysia, 6–9 December 2010; pp. 612–615. [Google Scholar]
- Lee, J.A.; Cho, S.H.; Lee, Y.J.; Yang, H.K.; Lee, J.W. Portable activity monitoring system for temporal parameters of gait cycles. J. Med. Syst. 2010, 34, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.B.; Mellifont, R.B.; Burkett, B.J. The use of a single inertial sensor to identify stride, step, and stance durations of running gait. J. Sci. Med. Sport 2010, 13, 270–273. [Google Scholar] [CrossRef]
- O’Donovan, K.J.; Greene, B.R.; McGrath, D.; O’Neill, R.; Burns, A.; Caulfield, B. SHIMMER: A new tool for temporal gait analysis. In Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 3826–3829. [Google Scholar]
- Willy, R.W. Innovations and pitfalls in the use of wearable devices in the prevention and rehabilitation of running related injuries. Phys. Ther. Sport 2018, 29, 26–33. [Google Scholar] [CrossRef]
- Mo, S.; Chow, D.H.K. Accuracy of three methods in gait event detection during overground running. Gait Posture 2018, 59, 93–98. [Google Scholar] [CrossRef]
- Benson, L.C.; Clermont, C.A.; Watari, R.; Exley, T.; Ferber, R. Automated accelerometer-based gait event detection during multiple running conditions. Sensors 2019, 19, 1483. [Google Scholar] [CrossRef] [Green Version]
- van den Berghe, P.; Six, J.; Gerlo, J.; Leman, M.; De Clercq, D. Validity and reliability of peak tibial accelerations as real-time measure of impact loading during over-ground rearfoot running at different speeds. J. Biomech. 2019, 86, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.M.; Mueller, F.F. Running with technology: Where are we heading? In Proceedings of the 26th Australian Computer-Human Interaction Conference on Designing Futures: The Future of Design, Sydney, Australia, 2–5 December 2014; pp. 527–530. [Google Scholar]
- Kuru, A. Exploring experience of runners with sports tracking technology. Int. J. Hum. Comput. Interact. 2016, 32, 847–860. [Google Scholar] [CrossRef]
- Clermont, C.A.; Duffett-Leger, L.; Hettinga, B.A.; Ferber, R. Runners’ perspectives on ‘smart’ wearable technology and its use for preventing injury. Int. J. Hum. Comput. Interact. 2020, 36, 31–40. [Google Scholar] [CrossRef]
- Lucas-Cuevas, A.G.; Encarnación-Martínez, A.; Camacho-García, A.; Llana-Belloch, S.; Pérez-Soriano, P. The location of the tibial accelerometer does influence impact acceleration parameters during running. J. Sports Sci. 2017, 35, 1734–1738. [Google Scholar] [CrossRef] [PubMed]
- Eitzen, I.; Renberg, J.; Faerevik, H. The use of wearable sensor technology to detect shock impacts in sports and occupational settings: A scoping review. Sensors 2021, 21, 4962. [Google Scholar] [CrossRef] [PubMed]
- Atallah, L.; Lo, B.; King, R.; Yang, G.Z. Sensor positioning for activity recognition using wearable accelerometers. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 320–329. [Google Scholar] [CrossRef] [PubMed]
- van Oeveren, B.T.; de Ruiter, C.J.; Beek, P.J.; Rispens, S.M.; van Dieën, J.H. An adaptive, real-time cadence algorithm for unconstrained sensor placement. Med. Eng. Phys. 2018, 52, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Seuter, M.; Pfeiffer, M.; Bauer, G.; Zentgraf, K.; Kray, C. Running with technology: Evaluating the impact of interacting with wearable devices on running movement. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2017, 1, 1–17. [Google Scholar] [CrossRef]
- Nijs, A.; Roerdink, M.; Beek, P.J. Cadence modulation in walking and running: Pacing steps or strides? Brain Sci. 2020, 10, 273. [Google Scholar] [CrossRef]
- Lorenzoni, V.; van den Berghe, P.; Maes, P.J.; de Bie, T.; de Clercq, D.; Leman, M. Design and validation of an auditory biofeedback system for modification of running parameters. J. Multimodal User Interfaces 2019, 13, 167–180. [Google Scholar] [CrossRef]
- van den Berghe, P.; Lorenzoni, V.; Derie, R.; Six, J.; Gerlo, J.; Leman, M.; De Clercq, D. Music-based biofeedback to reduce tibial shock in over-ground running: A proof-of-concept study. Sci. Rep. 2021, 11, 4091. [Google Scholar] [CrossRef]
- van Hooren, B.; Goudsmit, J.; Restrepo, J.; Vos, S. Real-time feedback by wearables in running: Current approaches, challenges and suggestions for improvements. J. Sport. Sci. 2019, 38, 214–230. [Google Scholar] [CrossRef] [PubMed]
- Forner-Cordero, A.; Mateu-Arce, M.; Forner-Cordero, I.; Alcántara, E.; Moreno, J.C.; Pons, J.L. Study of the motion artefacts of skin-mounted inertial sensors under different attachment conditions. Physiol. Meas. 2008, 29, N21. [Google Scholar] [CrossRef]
- Menz, H.B.; Lord, S.R.; Fitzpatrick, R.C. Acceleration patterns of the head and pelvis when walking on level and irregular surfaces. Gait Posture 2003, 18, 35–46. [Google Scholar] [CrossRef]
- Atallah, L.; Lo, B.; Yang, G.; Aziz, O. Detecting walking gait impairment with an ear-worn sensor. In Proceedings of the 6th International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA, USA, 3–5 June 2009. [Google Scholar]
- Burgos, C.P.; Gartner, L.; Ballester, M.A.G.; Noailly, J.; Stocker, F.; Schonfelder, M.; Adams, T.; Tassani, S. In-ear accelerometer-based sensor for gait classification. IEEE Sens. J. 2020, 20, 12895–12902. [Google Scholar] [CrossRef]
- Atallah, L.; Wiik, A.; Lo, B.; Cobb, J.P.; Amis, A.; Yang, G.Z. Gait asymmetry detection in older adults using a light ear-worn sensor. Physiol. Meas. 2014, 35, N29–N40. [Google Scholar] [CrossRef] [PubMed]
- Atallah, L.; Wiik, A.; Jones, G.G.; Lo, B.; Cobb, J.P.; Amis, A.; Yang, G.Z. Validation of an ear-worn sensor for gait monitoring using a force-plate instrumented treadmill. Gait Posture 2012, 35, 674–676. [Google Scholar] [CrossRef] [Green Version]
- Hwang, T.; Reh, J.; Effenberg, A.O.; Blume, H. Real-time gait analysis using a single head-worn inertial measurement unit. IEEE Trans. Consum. Electron. 2018, 64, 240–248. [Google Scholar] [CrossRef]
- Jarchi, D.; Wong, C.; Kwasnicki, R.M.; Heller, B.; Tew, G.A.; Yang, G.Z. Gait parameter estimation from a miniaturized ear-worn sensor using singular spectrum analysis and longest common subsequence. IEEE Trans. Biomed. Eng. 2014, 61, 1261–1273. [Google Scholar] [CrossRef]
- van Oeveren, B.T.; de Ruiter, C.J.; Beek, P.J.; van Dieën, J.H. The biomechanics of running and running styles: A synthesis. Sports Biomech. 2021. [Google Scholar] [CrossRef] [PubMed]
- Neptune, R.R.; Sasaki, K. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed. J. Exp. Biol. 2005, 208, 799–808. [Google Scholar] [CrossRef] [Green Version]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Timmermans, C.; Cutti, A.G.; van Donkersgoed, H.; Roerdink, M. Gaitography on lower-limb amputees: Repeatability and between-methods agreement. Prosthet. Orthot. Int. 2019, 43, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Morgan, D.W.; Martin, P.E.; Krahenbuhl, G.S.; Baldini, F.D. Variability in running economy and mechanics among trained male runners. Med. Sci. Sports Exerc. 1991, 23, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Riley, P.O.; Paolini, G.; Della Croce, U.; Paylo, K.W.; Kerrigan, D.C. A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects. Gait Posture 2007, 26, 17–24. [Google Scholar] [CrossRef]
- Nijs, A.; Roerdink, M.; Beek, P.J. Effects of acoustically paced cadence modulation on impact forces in running. Gait Posture 2021, 90, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.J.; Collop, A.C.; Batt, M.E. Surface effects on ground reaction forces and lower extremity kinematics in running. Med. Sci. Sports Exerc. 2000, 32, 1919–1926. [Google Scholar] [CrossRef] [Green Version]
Instructed Head Movements | Explanation of the Instructions |
---|---|
Look up | Rotate the head upwards to look toward the ceiling for a second |
Look down | Rotate the head downwards to look toward the floor for a second |
Shake your head | Rotate the head sideways to both sides quickly for a few repetitions |
Nod | Rotate the head vertically up and down quickly for a few repetitions |
Look at a bird flying by on the left | Rotate the head diagonally in a slight upward direction to the left for a second |
Look at a bird flying by on the right | Rotate the head diagonally in a slight upward direction to the right for a second |
Look at the time/check your watch (wrist) | Move your preferred arm in front of your body and look down towards your wrist, as if you were to check the time on a watch |
Speed (km/h) | Test | Retest | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | bias | SD | t(df) | p | ICC | ||
Earbuds | ||||||||||
Cadence | 7 | 156.50 | 11.01 | 155.15 | 10.74 | −1.35 | 3.19 | t(12) = −1.53 | 0.15 | 0.953 |
(steps/min) | 10 | 166.55 | 9.72 | 165.77 | 9.10 | −0.78 | 2.22 | t(11) = −1.22 | 0.25 | 0.971 |
13 | 171.55 | 8.29 | 171.21 | 8.31 | −0.49 | 3.01 | t(7) = −0.46 | 0.66 | 0.946 | |
max | 175.86 | 14.83 | 174.44 | 13.97 | −1.42 | 3.38 | N = 3 | |||
Stance time | 7 | 0.266 | 0.027 | 0.266 | 0.027 | 0.000 | 0.008 | t(10) = 0.02 | 0.99 | 0.960 |
(s) | 10 | 0.228 | 0.026 | 0.227 | 0.022 | −0.001 | 0.007 | t(11) = −0.48 | 0.64 | 0.960 |
13 | 0.205 | 0.015 | 0.200 | 0.015 | −0.005 | 0.008 | t(7) = −1.73 | 0.13 | 0.817 | |
max | 0.187 | 0.022 | 0.188 | 0.018 | 0.001 | 0.006 | N = 3 | |||
Force plate | ||||||||||
Cadence | 7 | 156.47 | 11.01 | 155.13 | 10.83 | −1.34 | 3.27 | t(12) = −1.48 | 0.17 | 0.951 |
(steps/min) | 10 | 166.54 | 9.76 | 165.80 | 9.14 | −0.74 | 2.20 | t(11) = −1.17 | 0.27 | 0.972 |
13 | 171.39 | 8.38 | 171.13 | 8.34 | −0.26 | 2.91 | t(8) = −0.27 | 0.79 | 0.945 | |
max | 180.08 | 14.96 | 178.98 | 14.62 | −1.10 | 2.83 | N = 4 | |||
Stance time | 7 | 0.271 | 0.034 | 0.274 | 0.035 | 0.003 | 0.011 | t(10) = 1.00 | 0.34 | 0.953 |
(s) | 10 | 0.226 | 0.023 | 0.227 | 0.019 | 0.001 | 0.006 | t(11) = 0.45 | 0.67 | 0.956 |
13 | 0.203 | 0.017 | 0.200 | 0.015 | −0.002 | 0.006 | t(8) = −1.13 | 0.29 | 0.938 | |
max | 0.175 | 0.007 | 0.177 | 0.008 | 0.002 | 0.005 | N = 4 |
Speed (km/h) | Force plate | Earbud | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | bias | SD | t(df) | p | ICC | |||
Cadence (steps/min) | 7 | Test | 156.47 | 11.01 | 156.50 | 11.01 | 0.10 | 0.28 | t(13) = 1.32 | 0.21 | 1.000 |
Retest | 155.13 | 10.83 | 155.15 | 10.74 | 0.02 | 0.17 | t(12) = 0.53 | 0.61 | 1.000 | ||
Combined | 156.37 | 10.59 | 156.47 | 10.61 | 0.09 | 0.27 | t(13) = 1.33 | 0.21 | 1.000 | ||
10 | Test | 166.54 | 9.76 | 166.55 | 9.72 | 0.02 | 0.18 | t(11) = 0.32 | 0.76 | 1.000 | |
Retest | 165.80 | 9.14 | 165.77 | 9.10 | −0.02 | 0.14 | t(11) = −0.59 | 0.57 | 1.000 | ||
Combined | 166.17 | 9.39 | 166.16 | 9.35 | −0.00 | 0.14 | t(11) = −0.09 | 0.93 | 1.000 | ||
13 | Test | 171.39 | 8.38 | 172.52 | 8.30 | 0.05 | 0.21 | t(7) = 0.63 | 0.55 | 1.000 | |
Retest | 171.13 | 8.34 | 172.03 | 8.48 | 0.08 | 0.27 | t(8) = 0.84 | 0.43 | 0.999 | ||
Combined | 171.26 | 8.23 | 171.42 | 8.13 | 0.16 | 0.38 | t(8) = 1.27 | 0.24 | 0.999 | ||
max | Test | 180.08 | 14.96 | 175.86 | 14.83 | 1.28 | 1.99 | N = 5 | |||
Retest | 178.98 | 14.62 | 174.44 | 13.97 | 0.07 | 0.15 | N = 3 | ||||
Combined | 181.33 | 13.37 | 182.63 | 14.39 | 1.29 | 2.01 | N = 5 | ||||
Stance time (s) | 7 | Test | 0.273 | 0.033 | 0.268 | 0.027 | −0.004 | 0.011 | t(11) = −1.40 | 0.19 | 0.933 |
Retest | 0.274 | 0.035 | 0.266 | 0.027 | −0.008 | 0.010 | t(10) = −2.77 | 0.02 | 0.924 | ||
Combined | 0.274 | 0.033 | 0.268 | 0.027 | −0.006 | 0.010 | t(11) = −2.02 | 0.07 | 0.933 | ||
10 | Test | 0.226 | 0.023 | 0.228 | 0.026 | 0.002 | 0.009 | t(11) = 0.73 | 0.48 | 0.940 | |
Retest | 0.227 | 0.019 | 0.227 | 0.022 | 0.000 | 0.009 | t(11) = 0.01 | 0.99 | 0.916 | ||
Combined | 0.227 | 0.021 | 0.227 | 0.024 | 0.001 | 0.008 | t(11) = −0.48 | 0.71 | 0.934 | ||
13 | Test | 0.198 | 0.011 | 0.205 | 0.015 | 0.007 | 0.016 | t(7) = 1.29 | 0.24 | 0.212 | |
Retest | 0.200 | 0.015 | 0.204 | 0.019 | 0.004 | 0.010 | t(8) = 1.22 | 0.26 | 0.825 | ||
Combined | 0.201 | 0.016 | 0.207 | 0.017 | 0.005 | 0.012 | t(8) = 1.29 | 0.23 | 0.732 | ||
max | Test | 0.175 | 0.006 | 0.182 | 0.020 | 0.007 | 0.022 | N = 5 | |||
Retest | 0.181 | 0.002 | 0.188 | 0.017 | 0.007 | 0.020 | N = 3 | ||||
Combined | 0.176 | 0.006 | 0.182 | 0.019 | 0.007 | 0.021 | N = 5 |
Head Movements | Force Plate | Earbud | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | bias | SD | t(df) | p | ICC | ||
Cadence | Up | 164.32 | 8.45 | 164.31 | 8.32 | −0.01 | 0.34 | t(12) = −0.07 | 0.94 | 0.999 |
Down | 163.43 | 8.39 | 163.33 | 8.28 | −0.09 | 0.47 | t(12) = −0.71 | 0.49 | 0.998 | |
Shake | 163.92 | 8.04 | 162.94 | 8.43 | −0.98 | 1.96 | t(12) = −1.80 | 0.10 | 0.967 | |
Nod | 163.74 | 8.19 | 163.76 | 8.32 | 0.02 | 0.42 | t(12) = 0.17 | 0.87 | 0.999 | |
Bird left | 163.60 | 8.19 | 163.70 | 8.20 | 0.09 | 0.27 | t(12) = 1.31 | 0.22 | 0.999 | |
Bird right | 164.21 | 7.35 | 164.26 | 7.19 | 0.05 | 0.31 | t(12) = 0.58 | 0.58 | 0.999 | |
Check watch | 163.94 | 7.70 | 163.91 | 7.60 | −0.04 | 0.42 | t(12) = −0.31 | 0.76 | 0.999 | |
Stance time | Up | 0.242 | 0.035 | 0.239 | 0.030 | −0.003 | 0.009 | t(12) = −1.31 | 0.22 | 0.962 |
Down | 0.245 | 0.034 | 0.244 | 0.029 | −0.002 | 0.008 | t(12) = −0.70 | 0.50 | 0.970 | |
Shake | 0.243 | 0.034 | 0.254 | 0.045 | 0.010 | 0.020 | t(12) = 1.86 | 0.09 | 0.855 | |
Nod | 0.244 | 0.037 | 0.240 | 0.031 | −0.004 | 0.009 | t(12) = −1.41 | 0.18 | 0.958 | |
Bird left | 0.245 | 0.034 | 0.242 | 0.029 | −0.002 | 0.009 | t(12) = −1.03 | 0.32 | 0.962 | |
Bird right | 0.245 | 0.034 | 0.242 | 0.028 | −0.003 | 0.009 | t(12) = −1.16 | 0.27 | 0.954 | |
Check watch | 0.244 | 0.033 | 0.241 | 0.028 | −0.003 | 0.009 | t(12) = −1.06 | 0.31 | 0.957 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nijs, A.; Beek, P.J.; Roerdink, M. Reliability and Validity of Running Cadence and Stance Time Derived from Instrumented Wireless Earbuds. Sensors 2021, 21, 7995. https://doi.org/10.3390/s21237995
Nijs A, Beek PJ, Roerdink M. Reliability and Validity of Running Cadence and Stance Time Derived from Instrumented Wireless Earbuds. Sensors. 2021; 21(23):7995. https://doi.org/10.3390/s21237995
Chicago/Turabian StyleNijs, Anouk, Peter J. Beek, and Melvyn Roerdink. 2021. "Reliability and Validity of Running Cadence and Stance Time Derived from Instrumented Wireless Earbuds" Sensors 21, no. 23: 7995. https://doi.org/10.3390/s21237995
APA StyleNijs, A., Beek, P. J., & Roerdink, M. (2021). Reliability and Validity of Running Cadence and Stance Time Derived from Instrumented Wireless Earbuds. Sensors, 21(23), 7995. https://doi.org/10.3390/s21237995