Magnetic Barkhausen Noise Transient Analysis for Microstructure Evolution Characterization with Tensile Stress in Elastic and Plastic Status
Abstract
:1. Introduction
2. Methodology
2.1. The Establishment of MBN Transient Analysis
2.2. MBN Transient Analysi for Stress Characterization
3. Experimental Set-Up and Sample Preparation
3.1. Sample Preparation
3.2. Experiment Setup
4. Results and Discussion
4.1. The MBN Transient Analysis under Stress in the Elastic and Plastic Range
4.2. The Effect of Grain and GB on MBN Transient Analysis
4.3. The Distinction between Elastic Range and Plastic Range
4.4. The Reproducibility of Stress Measurement Using MBN Transient Analysis
4.5. The Correlation of MBN Transient Analysis and Tensile Stress
5. Conclusions and Future Work
- (1)
- The tensile stress makes the DW parallel to the axis of stress in the elastic range, which increases the duration of MBN transient analysis. Dislocation and GB migration hinder the DWs motion and decrease the duration and the intensity under stress in the plastic range. Thus, the positive and negative correlation of MBN transient eigenvalues ( and ) and stress characterize the evolution of the microstructure.
- (2)
- The different change trends in eigenvalue fusion characterize microstructure evolution in the elastic and plastic ranges. Thus, eigenvalue fusion distinguishes the stress state in the elastic and plastic range on the microscopic scale.
- (3)
- GB migration and dislocation appear around the grain boundary under stress in the plastic range, causing inhomogeneity of MBN transient eigenvalues ( and ) on the GB and the grain. MBN transient analysis has the ability for the inhomogeneity magnetic properties characterization to be affected by the stress. The GBs are more unstable under stress in the plastic range.
- (4)
- MBN transient analysis has demonstrated reproducibility to characterize microstructure under stresses of materials with different grain sizes and yield strengths.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, J.; Liu, X.; Wang, Y.; Wang, G.; Wang, J.; Zhou, L.; Yang, Y. Nanocrystallization, magnetic properties and bending ductility of antiferromagnetic Mn-doped FeSiBCuPC alloys induced by micro-compressive stress annealing. J. Alloys Compd. 2021, 882, 160746. [Google Scholar] [CrossRef]
- Xu, J.; Liu, C.; Wu, J.; Qi, B.; Zhang, Y.; Zhao, Y.; Zhou, L. Three-dimensional microstructure and texture evolution of Ti35 alloy applied in nuclear industry during plastic deformation at various temperatures. Mater. Sci. Eng. A 2021, 819, 141508. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Ghasemi, A.; Farrahi, G.H.; Sherafatnia, K. A comprehensive experimental and numerical study on redistribution of residual stresses by shot peening. Mater. Des. 2016, 90, 478–487. [Google Scholar] [CrossRef]
- Dai, W.; Hao, J.; Li, C.; He, D.; Jia, D.; Zhang, Y.; Tan, Z. Residual stress relaxation and duty cycle on high cycle fatigue life of micro-arc oxidation coated AA7075-T6 alloy. Int. J. Fatigue 2020, 130, 105283. [Google Scholar] [CrossRef]
- Johnson, D.; Kuhr, B.; Farkas, D.; Was, G. Quantitative linkage between the stress at dislocation channel—Grain boundary interaction sites and irradiation assisted stress corrosion crack initiation. Acta Mater. 2019, 170, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.; Tian, G.Y.; Barrans, S. Residual magnetic field sensing for stress measurement. Sens. Actuators A Phys. 2007, 135, 381–387. [Google Scholar] [CrossRef]
- Sun, L.; Liu, X.; Niu, H. A method for identifying geometrical defects and stress concentration zones in MMM technique. NDT E Int. 2019, 107, 102133. [Google Scholar] [CrossRef]
- Churyukanova, M.; Kaloshkin, S.; Shuvaeva, E.; Stepashkin, A.; Zhdanova, M.; Aronin, A.; Aksenov, O.; Arakelov, P.; Zhukova, V. Non-contact method for stress monitoring based on stress dependence of magnetic properties of Fe-based microwires. J. Alloys Compd. 2018, 748, 199–205. [Google Scholar] [CrossRef]
- Colaiori, F. Exactly solvable model of avalanches dynamics for Barkhausen crackling noise. Adv. Phys. 2008, 57, 287–359. [Google Scholar] [CrossRef]
- Yelbay, H.I.; Cam, I.; Gür, C.H. Non-destructive determination of residual stress state in steel weldments by Magnetic Barkhausen Noise technique. NDT E Int. 2010, 43, 29–33. [Google Scholar] [CrossRef]
- Blaow, M.; Evans, J.; Shaw, B. Magnetic Barkhausen noise: The influence of microstructure and deformation in bending. Acta Mater. 2005, 53, 279–287. [Google Scholar] [CrossRef]
- Burgess, J.A.J.; Fraser, A.E.; Sani, F.F.; Vick, D.; Hauer, B.D.; Davis, J.P.; Freeman, M.R. Quantitative Magneto-Mechanical Detection and Control of the Barkhausen Effect. Science 2013, 339, 1051–1054. [Google Scholar] [CrossRef]
- Jiles, D.C. Dynamics of domain magnetization and the Barkhausen effect. Czechoslov. J. Phys. 2000, 50, 893–924. [Google Scholar] [CrossRef]
- He, Y.; Mehdi, M.; Liu, H.; Hilinski, E.J.; Edrisy, A. Angular magnetic Barkhausen noise of incline- and cross-rolled non-oriented electrical steel sheets. Mater. Charact. 2021, 177, 111200. [Google Scholar] [CrossRef]
- Sanchez, J.C.; Perez-Benitez, J.A.; Padovese, L. Analysis of the stress dependent magnetic easy axis in ASTM 36 steel by the magnetic Barkhausen noise. NDT E Int. 2007, 40, 168–172. [Google Scholar] [CrossRef]
- Neslušan, M.; Jurkovič, M.; Kalina, T.; Pitoňák, M.; Zgútová, K. Monitoring of S235 steel over-stressing by the use of Barkhausen noise technique. Eng. Fail. Anal. 2020, 117, 104843. [Google Scholar] [CrossRef]
- Kleber, X.; Vincent, A. On the role of residual internal stresses and dislocations on Barkhausen noise in plastically deformed steel. NDT E Int. 2004, 37, 439–445. [Google Scholar] [CrossRef]
- Campos, M.A.; Capó-Sánchez, J.; Benítez, J.P.; Padovese, L. Characterization of the elastic–plastic region in AISI/SAE 1070 steel by the magnetic barkhausen noise. NDT E Int. 2008, 41, 656–659. [Google Scholar] [CrossRef]
- Jiles, D.C. Theory of the magnetomechanical effect. J. Phys. D Appl. Phys. 1995, 28, 1537. [Google Scholar] [CrossRef]
- Vourna, P.; Ktena, A.; Tsakiridis, P.; Hristoforou, E. A novel approach of accurately evaluating residual stress and microstructure of welded electrical steels. NDT E Int. 2015, 71, 33–42. [Google Scholar] [CrossRef]
- Wang, P.; Zhu, L.; Zhu, Q.; Ji, X.; Wang, H.; Tian, G.; Yao, E. An application of back propagation neural network for the steel stress detection based on Barkhausen noise theory. NDT E Int. 2013, 55, 9–14. [Google Scholar] [CrossRef]
- Neslušan, M.; Minárik, P.; Čilliková, M.; Kolařík, K.; Rubešová, K. Barkhausen noise emission in tool steel X210Cr12 after semi-solid processing. Mater. Charact. 2019, 157, 109891. [Google Scholar] [CrossRef]
- Ding, S.; Tian, G.; Dobmann, G.; Wang, P. Analysis of domain wall dynamics based on skewness of magnetic Barkhausen noise for applied stress determination. J. Magn. Magn. Mater. 2017, 421, 225–229. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Tian, G.; Gao, B.; Zeng, K.; Xu, Y.; Liu, Q. Time-Response-Histogram-Based Feature of Magnetic Barkhausen Noise for Material Characterization Considering Influences of Grain and Grain Boundary under In Situ Tensile Test. Sensors 2021, 21, 2350. [Google Scholar] [CrossRef]
- Fagan, P.; Ducharne, B.; Daniel, L.; Skarlatos, A. Multiscale modelling of the magnetic Barkhausen noise energy cycles. J. Magn. Magn. Mater. 2021, 517, 167395. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Bohn, F.; Sommer, R.; Durin, G.; Zapperi, S.; Sethna, J.P. Universality beyond power laws and the average avalanche shape. Nat. Phys. 2011, 7, 316–320. [Google Scholar] [CrossRef] [Green Version]
- Jiles, D.C.; Sipahi, L.B.; Williams, G. Modeling of micromagnetic Barkhausen activity using a stochastic process extension to the theory of hysteresis. J. Appl. Phys. 1993, 73, 5830–5832. [Google Scholar] [CrossRef] [Green Version]
- Manhertz, G.; Bereczky, A. STFT spectrogram based hybrid evaluation method for rotating machine transient vibration analysis. Mech. Syst. Signal Process. 2021, 154, 107583. [Google Scholar] [CrossRef]
- Maciusowicz, M.; Psuj, G. Time-Frequency Analysis of Barkhausen Noise for the Needs of Anisotropy Evaluation of Grain-Oriented Steels. Sensors 2020, 20, 768. [Google Scholar] [CrossRef] [Green Version]
- Maciusowicz, M.; Psuj, G. Use of Time-Dependent Multispectral Representation of Magnetic Barkhausen Noise Signals for the Needs of Non-Destructive Evaluation of Steel Materials. Sensors 2019, 19, 1443. [Google Scholar] [CrossRef] [Green Version]
- Bertotti, G.; Durin, G.; Magni, A. Scaling aspects of domain wall dynamics and Barkhausen effect in ferromagnetic materials. J. Appl. Phys. 1994, 75, 5490–5492. [Google Scholar] [CrossRef]
- Liu, J.; Tian, G.Y.; Gao, B.; Zeng, K.; Zheng, Y.; Chen, J. Micro-macro characteristics between domain wall motion and magnetic Barkhausen noise under tensile stress. J. Magn. Magn. Mater. 2020, 493, 165719. [Google Scholar] [CrossRef]
- Lima, G.; Corso, G.; Correa, M.; Sommer, R.L.; Ivanov, P.C.; Bohn, F. Universal temporal characteristics and vanishing of multifractality in Barkhausen avalanches. Phys. Rev. E 2017, 96, 022159. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Jiles, D.C. Modeling of the magnetomechanical effect: Application of the Rayleigh law to the stress domain. J. Appl. Phys. 2003, 93, 8480–8482. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Tian, G.Y.; Gao, B.; Zeng, K.; Qiu, F. Domain wall characterization inside grain and around GB under tensile stress. J. Magn. Magn. Mater. 2019, 471, 39–48. [Google Scholar] [CrossRef]
- Wang, J.; Lu, X.; Cheng, C.; Li, B.; Ma, Z. Improve the quality of 1060Al/Q235 explosive composite plate by friction stir processing. J. Mater. Res. Technol. 2020, 9, 42–51. [Google Scholar] [CrossRef]
- Liang, Y.; Ye, F.; Lin, J.; Wang, Y.; Chen, G. Effect of annealing temperature on magnetic properties of cold rolled high silicon steel thin sheet. J. Alloys Compd. 2010, 491, 268–270. [Google Scholar] [CrossRef]
- Zeng, K.; Tian, G.; Liu, J.; Gao, B.; Qiu, F. Repeatability and stability study of residual magnetic field for domain wall characterization. J. Magn. Magn. Mater. 2019, 485, 391–400. [Google Scholar] [CrossRef]
- Perez-Benitez, J.; Capo-Sanchez, J.; Anglada-Rivera, J.; Padovese, L. A study of plastic deformation around a defect using the magnetic Barkhausen noise in ASTM 36 steel. NDT E Int. 2008, 41, 53–58. [Google Scholar] [CrossRef]
- Kikuchi, H.; Ara, K.; Kamada, Y.; Kobayashi, S. Effect of microstructure changes on Barkhausen noise properties and hysteresis loop in cold rolled low carbon steel. IEEE Transact. Magn. 2009, 45, 2744–2747. [Google Scholar] [CrossRef]
- He, T.; Feng, M. Combined effects of cooperative grain boundary sliding and migration and reinforced particles on crack growth in fine-grained Mg alloys. J. Alloys Compd. 2018, 749, 705–714. [Google Scholar] [CrossRef]
- Vashista, M.; Moorthy, V. Influence of applied magnetic field strength and frequency response of pick-up coil on the magnetic barkhausen noise profile. J. Magn. Magn. Mater. 2013, 345, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Kypris, O.; Nlebedim, I.C.; Jiles, D.C. Measuring stress variation with depth using Barkhausen signals. J. Magn. Magn. Mater. 2016, 407, 377–395. [Google Scholar] [CrossRef]
- Anglada-Rivera, J.; Padovese, L.; Capó-Sánchez, J. Magnetic Barkhausen Noise and hysteresis loop in commercial carbon steel: Influence of applied tensile stress and grain size. J. Magn. Magn. Mater. 2001, 231, 299–306. [Google Scholar] [CrossRef]
- Kang, J.; Wang, Y.; Chen, X.; Zhang, C.; Peng, Y.; Wang, T. Grain refinement and mechanical properties of Fe-30Mn-0.11C steel. Results Phys. 2019, 13, 102247. [Google Scholar] [CrossRef]
- Alessandro, B.; Beatrice, C.; Bertotti, G.; Montorsi, A. Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. II Experiments. J. Appl. Phys. 1990, 68, 2908–2915. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Kim, S.J.; Jung, H.G.; Kim, K.Y. Effect of tensile stress in elastic and plastic range on hydrogen permeation of high-strength steel in sour environment. Electrochim. Acta 2012, 78, 139–146. [Google Scholar] [CrossRef]
- Yamaura, S.; Furuya, Y.; Watanabe, T. The effect of grain boundary microstructure on Barkhausen noise in ferromagnetic materials. Acta Mater. 2001, 49, 3019–3027. [Google Scholar] [CrossRef]
- Ding, S.; Tian, G.; Sutthaweekul, R. Non-destructive hardness prediction for 18CrNiMo7-6 steel based on feature selection and fusion of Magnetic Barkhausen Noise. NDT E Int. 2019, 107, 102138. [Google Scholar] [CrossRef]
- Wang, F.; Xu, J.; Fan, Q. Statistical properties of the detrended multiple cross-correlation coefficient. Commun. Nonlinear Sci. Numer. Simul. 2021, 99, 105781. [Google Scholar] [CrossRef]
Fe | Si | C | Mn | P | S | Al |
---|---|---|---|---|---|---|
Balance | 3~5 | 0.06 | 0.15 | 0.03 | 0.25 | 5.1~8.5 |
Fe | C | Mn | Si | P | S |
---|---|---|---|---|---|
Balance | 0.14~0.22 | 0.30~0.65 | ≤0.30 | ≤0.04 | ≤0.05 |
Elastic | Plastic | |||
---|---|---|---|---|
Location | Duration | Intensity | Duration | Intensity |
S1-g1 of S1 | 0.99 | 0.25 | −0.90 | −0.78 |
S1-gb12 of S1 | 0.99 | −0.29 | −0.92 | −0.96 |
S1-g2 of S1 | 0.99 | −0.12 | −0.97 | −0.95 |
L1 of S2 | 0.99 | −0.84 | −0.94 | −0.84 |
L2 of S2 | 0.71 | −0.86 | −0.71 | −0.86 |
L3 of S2 | 0.95 | −0.86 | −0.99 | −0.87 |
L1 of S3 | 0.96 | 0.18 | −0.75 | −0.73 |
L2 of S3 | 0.86 | −0.31 | −0.73 | −0.76 |
L3 of S3 | 0.68 | −0.55 | −0.77 | −0.74 |
Location | Elastic | Plastic |
---|---|---|
(0.99, 0.25) | (−0.90, −0.78) | |
RMS | 0.14 | −0.71 |
Peak | −0.69 | −0.62 |
Mean | 0.62 | −0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Tian, G.; Gao, B.; Zeng, K.; Liu, Q.; Zheng, Y. Magnetic Barkhausen Noise Transient Analysis for Microstructure Evolution Characterization with Tensile Stress in Elastic and Plastic Status. Sensors 2021, 21, 8310. https://doi.org/10.3390/s21248310
Liu J, Tian G, Gao B, Zeng K, Liu Q, Zheng Y. Magnetic Barkhausen Noise Transient Analysis for Microstructure Evolution Characterization with Tensile Stress in Elastic and Plastic Status. Sensors. 2021; 21(24):8310. https://doi.org/10.3390/s21248310
Chicago/Turabian StyleLiu, Jia, GuiYun Tian, Bin Gao, Kun Zeng, QianHang Liu, and Yang Zheng. 2021. "Magnetic Barkhausen Noise Transient Analysis for Microstructure Evolution Characterization with Tensile Stress in Elastic and Plastic Status" Sensors 21, no. 24: 8310. https://doi.org/10.3390/s21248310
APA StyleLiu, J., Tian, G., Gao, B., Zeng, K., Liu, Q., & Zheng, Y. (2021). Magnetic Barkhausen Noise Transient Analysis for Microstructure Evolution Characterization with Tensile Stress in Elastic and Plastic Status. Sensors, 21(24), 8310. https://doi.org/10.3390/s21248310