Multi-Layer Blockchain-Based Security Architecture for Internet of Things
Abstract
:1. Introduction
2. Related Works
2.1. Authentication and Authorization in IoT
2.2. Blockchain-Based Frameworks for IoT Security and Privacy
2.3. Permissioned Blockchain in IoT
2.4. Layer-Based IoT Blockchain
- A novel, lightweight, private multi-layer model is proposed for reducing the complexity of blockchain technology implementation while improving the network scalability. The proposed model is tailored to meet the requirements of IoT devices by adopting the blockchain technology to suit different layers of the IoT system. The simulation study shows that the proposed Hyperledger Fabric-based method outperforms a traditional blockchain solution, like the Ethereum, in terms of latency and throughput.
- Clustering is one of the key steps of implementing the multi-layer architecture. Therefore, a new network clustering method is presented. It is based on the evolutionary computation that deploys multi-objective fitness functions that are relevant to heterogeneous IoT networks. The decentralized, fast, and self-clustering method divides the IoT network into clusters while considering the node mobility. The simulation results show that the proposed clustering algorithm outperforms existing solutions.
- A novel method of authentication and authorization of IoT nodes is implemented in order to provide security for IoT devices and protect device communications through a multi-layer structure.
3. Multi-Layer Security Framework
3.1. LAYER-1
- a new node registration to the network as a new entity;
- session key (cryptographic key) distribution and assignment;
- communications management and initiation; and,
- secure communications management and establishment.
3.2. LAYER-2
3.3. LAYER-3
4. Framework Implementation
4.1. Network Self-Clustering
4.1.1. GA Phase: CH Selection with Genetic Algorithm
4.1.2. Optimization of Distance and Coverage by GA
4.1.3. Network Changes Optimization Using SA
4.1.4. Clustering Results
4.2. Blockchain Implementation
4.2.1. Development Environment
4.2.2. Smart Contract for Modeling Transactions
4.3. Performance Evaluation
- Transaction Throughput, i.e., the total number of committed transactions by the blockchain System Under Test (SUT) in a given time period in seconds.
- Transaction Latency, i.e., the amount of time that is taken for a transaction to be stored on the blockchain ledger.
5. Security Analysis of the Framework
5.1. Framework Privacy
5.2. Heterogeneity and Flexibility
5.3. Authentication
5.4. Scalability
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ASLPR | Application-Specific Low Power Routing |
BCS | Blockchain Structures |
BS | Base Station |
CC | ChainCode |
CH | Cluster Head |
CLI | Command Line Interface |
CoAP | Constrained Application Protocol |
D2D | Device-to-Device |
EC | Evolutionary Computation |
ECC | Elliptic Curve Cryptography |
ERA | Energy-aware Routing Algorithm |
FSFLA | Fuzzy Shuffled Frog Leaping Algorithm |
GA | Genetic Algorithm |
GAPSO | Genetic Algorithm and Particle Swarm Optimization |
gPRC | google Remote Procedures Calls |
HLF | Hyperledger Fabric |
IDE | Integrated Development Environment |
IoT | Internet of Things |
LSB | Lightweight Scalable Blockchain |
LHB | Lightweight Hyperledger Blockchain |
LTS | Long Term Support |
MCNs | Multihop Cellular Networks |
MSP | Membership Service Providers |
OS | Ordering Service |
PKI | Public Key Infrastructure |
PoBT | Proof of Block and Trade |
PoC | Proof of Concept |
PoW | Proof of Work |
RoA | Rating of Allocation |
SA | Simulated Annealing |
SDK | Software Development Kit |
SDN | Software Defined Networking |
SFLA | Shuffled Frog Leaping Algorithm |
SI | Swarm Intelligence |
SUT | System Under the Test |
TLS | Transport Layer Security |
TSP | Transactions Per Second |
References
- Familiar, B. Microservices, IoT, and Azure; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Amoozadeh, M.; Raghuramu, A.; Chuah, C.N.; Ghosal, D.; Zhang, H.M.; Rowe, J.; Levitt, K. Security vulnerabilities of connected vehicle streams and their impact on cooperative driving. IEEE Commun. Mag. 2015, 53, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Ho, G.; Leung, D.; Mishra, P.; Hosseini, A.; Song, D.; Wagner, D. Smart locks: Lessons for securing commodity internet of things devices. In Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, Xi’an, China, 30 May–3 June 2016; ACM: New York, NY, USA, 2016; pp. 461–472. [Google Scholar]
- Kshetri, N. Can blockchain strengthen the internet of things? IT Prof. 2017, 19, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Dorri, A.; Kanhere, S.S.; Jurdak, R.; Gauravaram, P. LSB: A Lightweight Scalable Blockchain for IoT security and anonymity. J. Parallel Distrib. Comput. 2019, 134, 180–197. [Google Scholar] [CrossRef]
- Khan, M.A.; Salah, K. IoT security: Review, blockchain solutions, and open challenges. Future Gener. Comput. Syst. 2018, 82, 395–411. [Google Scholar] [CrossRef]
- Karajeh, H.; Maqableh, M.; Masa’deh, R. Privacy and Security Issues of Cloud Computing Environment. In Proceedings of the 23rd IBIMA Conference Vision: 2020, Valencia, Spain, 13–14 May 2014; pp. 1–15. [Google Scholar]
- Guerbouj, S.S.E.; Gharsellaoui, H.; Bouamama, S. A Comprehensive Survey on Privacy and Security Issues in Cloud Computing, Internet of Things and Cloud of Things. Int. J. Serv. Sci. Manag. Eng. Technol. 2019, 10, 32–44. [Google Scholar]
- Ferrag, M.A.; Derdour, M.; Mukherjee, M.; Derhab, A.; Maglaras, L.; Janicke, H. Blockchain Technologies for the Internet of Things: Research Issues and Challenges. IEEE Internet Things J. 2019, 6, 2188–2204. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wu, L.; Yin, G.; Li, L.; Zhao, H. A Survey on Security and Privacy Issues in Internet-of-Things. IEEE Internet Things J. 2017, 4, 1250–1258. [Google Scholar] [CrossRef]
- Mistry, I.; Tanwar, S.; Tyagi, S.; Kumar, N. Blockchain for 5G-enabled IoT for industrial automation: A systematic review, solutions, and challenges. Mech. Syst. Signal Process. 2020, 135, 106382. [Google Scholar] [CrossRef]
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Wang, S.; Ouyang, L.; Yuan, Y.; Ni, X.; Han, X.; Wang, F. Blockchain-Enabled Smart Contracts: Architecture, Applications, and Future Trends. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2266–2277. [Google Scholar] [CrossRef]
- Moin, S.; Karim, A.; Safdar, Z.; Safdar, K.; Ahmed, E.; Imran, M. Securing IoTs in distributed blockchain: Analysis, requirements and open issues. Future Gener. Comput. Syst. 2019, 100, 325–343. [Google Scholar] [CrossRef]
- Granjal, J.; Monteiro, E.; Silva, J.S. Security for the Internet of Things: A Survey of Existing Protocols and Open Research Issues. IEEE Commun. Surv. Tutor. 2015, 17, 1294–1312. [Google Scholar] [CrossRef]
- Li, S.; Da Xu, L.; Zhao, S. 5G Internet of Things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Lao, L.; Li, Z.; Hou, S.; Xiao, B.; Guo, S.; Yang, Y. A survey of IoT applications in blockchain systems: Architecture, consensus, and traffic modeling. ACM Comput. Surv. 2020, 53, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Decker, C.; Seidel, J.; Wattenhofer, R. Bitcoin meets strong consistency. In Proceedings of the 17th International Conference on Distributed Computing and Networking, Singapore, 4–7 January 2016; pp. 1–10. [Google Scholar]
- Du, K.L.; Swamy, M. Search and optimization by metaheuristics. In Techniques and Algorithms Inspired by Nature; Birkhauser: Basel, Switzerland, 2016. [Google Scholar]
- Zhang, Z.; Cho, M.C.Y.; Wang, C.; Hsu, C.; Chen, C.; Shieh, S. IoT Security: Ongoing Challenges and Research Opportunities. In Proceedings of the 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications, Matsue, Japan, 17–19 November 2014; pp. 230–234. [Google Scholar] [CrossRef]
- Cooper, D.; Santesson, S.; Farrell, S.; Boeyen, S.; Housley, R.; Polk, W.T. Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC 2008, 5280, 1–151. [Google Scholar]
- Oriwoh, E.; Conrad, M. ‘Things’ in the Internet of Things: Towards a definition. Int. J. Internet Things 2015, 4, 1–5. [Google Scholar]
- Ukil, A.; Bandyopadhyay, S.; Pal, A. Iot-privacy: To be private or not to be private. In Proceedings of the 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS 2014), Toronto, ON, Canada, 27 April–2 May 2014; pp. 123–124. [Google Scholar]
- Novo, O. Blockchain Meets IoT: An Architecture for Scalable Access Management in IoT. IEEE Internet Things J. 2018, 5, 1184–1195. [Google Scholar] [CrossRef]
- Pal, S.; Rabehaja, T.; Hill, A.; Hitchens, M.; Varadharajan, V. On the integration of blockchain to the internet of things for enabling access right delegation. IEEE Internet Things J. 2019, 7, 2630–2639. [Google Scholar] [CrossRef]
- Qu, C.; Tao, M.; Zhang, J.; Hong, X.; Yuan, R. Blockchain based credibility verification method for IoT entities. Secur. Commun. Netw. 2018, 2018. [Google Scholar] [CrossRef]
- Kumar, N.M.; Mallick, P.K. Blockchain technology for security issues and challenges in IoT. Procedia Comput. Sci. 2018, 132, 1815–1823. [Google Scholar] [CrossRef]
- Li, D.; Peng, W.; Deng, W.; Gai, F. A Blockchain-Based Authentication and Security Mechanism for IoT. In Proceedings of the 2018 27th International Conference on Computer Communication and Networks (ICCCN), Hangzhou, China, 30 July–2 August 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Hassan, M.U.; Rehmani, M.H.; Chen, J. Privacy preservation in blockchain based IoT systems: Integration issues, prospects, challenges, and future research directions. Future Gener. Comput. Syst. 2019, 97, 512–529. [Google Scholar] [CrossRef]
- Dai, H.; Zheng, Z.; Zhang, Y. Blockchain for Internet of Things: A Survey. IEEE Internet Things J. 2019, 6, 8076–8094. [Google Scholar] [CrossRef] [Green Version]
- Dorri, A.; Kanhere, S.S.; Jurdak, R.; Gauravaram, P. Blockchain for IoT security and privacy: The case study of a smart home. In Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Big Island, HI, USA, 13–17 March 2017; pp. 618–623. [Google Scholar]
- Biswas, S.; Sharif, K.; Li, F.; Maharjan, S.; Mohanty, S.P.; Wang, Y. PoBT: A lightweight consensus algorithm for scalable IoT business blockchain. IEEE Internet Things J. 2019, 7, 2343–2355. [Google Scholar] [CrossRef]
- Pahl, C.; El Ioini, N.; Helmer, S. A Decision Framework for Blockchain Platforms for IoT and Edge Computing. In Proceedings of the International Conference on Internet of Things, Big Data and Security, Funchal, Portugal, 19–21 March 2018. [Google Scholar]
- Yánez, W.; Mahmud, R.; Bahsoon, R.; Zhang, Y.; Buyya, R. Data Allocation Mechanism for Internet-of-Things Systems with Blockchain. IEEE Internet Things J. 2020, 7, 3509–3522. [Google Scholar] [CrossRef]
- Fabric, W.T.H. Available online: http://hyperledger-fabric.readthedocs.io/en/release-1.4/ (accessed on 15 October 2020).
- Klaokliang, N.; Teawtim, P.; Aimtongkham, P.; So-In, C.; Niruntasukrat, A. A Novel IoT Authorization Architecture on Hyperledger Fabric with Optimal Consensus Using Genetic Algorithm. In Proceedings of the 2018 Seventh ICT International Student Project Conference (ICT-ISPC), Nakhon Pathom, Thailand, 11–13 July 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Zhaofeng, M.; Lingyun, W.; Xiaochang, W.; Zhen, W.; Weizhe, Z. Blockchain-Enabled Decentralized Trust Management and Secure Usage Control of IoT Big Data. IEEE Internet Things J. 2019, 7, 4000–4015. [Google Scholar] [CrossRef]
- Biswas, K.; Muthukkumarasamy, V. Securing Smart Cities Using Blockchain Technology. In Proceedings of the 2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Sydney, Australia, 12–14 December 2016; pp. 1392–1393. [Google Scholar] [CrossRef] [Green Version]
- Chendeb, N.; Khaled, N.; Agoulmine, N. Integrating Blockchain with IoT for a Secure Healthcare Digital System. In Proceedings of the 8th International Workshop on ADVANCEs in ICT Infrastructures and Services (ADVANCE 2020), Cancun, Mexico, 27–29 January 2020; pp. 1–8. [Google Scholar]
- Sharma, P.K.; Park, J.H. Blockchain based hybrid network architecture for the smart city. Future Gener. Comput. Syst. 2018, 86, 650–655. [Google Scholar] [CrossRef]
- Mbarek, B.; Jabeur, N.; Pitner, T. Mbs: Multilevel blockchain system for IoT. Pers. Ubiquitous Comput. 2019, 1–8. [Google Scholar] [CrossRef]
- Oktian, Y.E.; Lee, S.G.; Lee, H.J. Hierarchical multi-blockchain architecture for scalable internet of things environment. Electronics 2020, 9, 1050. [Google Scholar] [CrossRef]
- Li, C.; Zhang, L.J. A blockchain based new secure multi-layer network model for Internet of Things. In Proceedings of the 2017 IEEE International Congress on Internet of Things (ICIOT). IEEE, Honolulu, HI, USA, 25–30 June 2017; pp. 33–41. [Google Scholar]
- Sagirlar, G.; Carminati, B.; Ferrari, E.; Sheehan, J.D.; Ragnoli, E. Hybrid-iot: Hybrid blockchain architecture for internet of things-pow sub-blockchains. In Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018; pp. 1007–1016. [Google Scholar]
- Badr, S.; Gomaa, I.; Abd-Elrahman, E. Multi-tier blockchain framework for IoT-EHRs systems. Procedia Comput. Sci. 2018, 141, 159–166. [Google Scholar] [CrossRef]
- Xuan, S.; Zhang, Y.; Tang, H.; Chung, I.; Wang, W.; Yang, W. Hierarchically Authorized Transactions for Massive Internet-of-Things Data Sharing Based on Multilayer Blockchain. Appl. Sci. 2019, 9, 5159. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Yang, Z.; Hong, Z.; Li, S.; Chen, W. Smart Contract-based Hierarchical Auction Mechanism for Edge Computing in Blockchain-empowered IoT. In Proceedings of the 2020 IEEE 21st International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Cork, Ireland, 31 August–3 September 2020; pp. 147–156. [Google Scholar]
- Uddin, M.A.; Stranieri, A.; Gondal, I.; Balasurbramanian, V. A Lightweight Blockchain Based Framework for Underwater IoT. Electronics 2019, 8, 1552. [Google Scholar] [CrossRef] [Green Version]
- Saputro, M.Y.A.; Sari, R.F. Securing IoT network using lightweight multi-fog (LMF) blockchain model. In Proceedings of the 2019 6th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Bandung, Indonesia, 18–20 September 2019; pp. 183–188. [Google Scholar]
- Rashid, M.A.; Pajooh, H.H. A Security Framework for IoT Authentication and Authorization Based on Blockchain Technology. In Proceedings of the 2019 18th IEEE International Conference On Trust, Security and Privacy in Computing and Communications/13th IEEE International Conference on Big Data Science And Engineering (TrustCom/BigDataSE), Rotorua, New Zealand, 5–8 August 2019; pp. 264–271. [Google Scholar] [CrossRef]
- Aslam, S.; Alam, F.; Hasan, S.F.; Rashid, M.A. Performance Analysis of Clustering Algorithms for Content-Sharing Based D2D Enabled 5G Networks. In Proceedings of the International Telecommunication Networks and Applications Conference 2019 (ITNAC2019), Auckland, New Zealand, 27–29 November 2019. [Google Scholar]
- Foundation, L. Hyperledger White paper. Hyperledger 2016, v2.0.0, 1–19. [Google Scholar]
- De Angelis, S.; Aniello, L.; Baldoni, R.; Lombardi, F.; Margheri, A.; Sassone, V. PBFT vs. proof-of-authority: Applying the CAP theorem to permissioned blockchain. In Proceedings of the Italian Conference on Cyber Security, Milan, Italy, 6–9 February 2018. [Google Scholar]
- Cachin, C. Architecture of the hyperledger blockchain fabric. In Proceedings of the Workshop on Distributed Cryptocurrencies and Consensus Ledgers, Chicago, IL, USA, 25–29 July 2016; Volume 310. [Google Scholar]
- Joglekar, J.; Bhutani, S.; Patel, N.; Soman, P. Lightweight Elliptical Curve Cryptography (ECC) for Data Integrity and User Authentication in Smart Transportation IoT System. In Sustainable Communication Networks and Application; Karrupusamy, P., Chen, J., Shi, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 270–278. [Google Scholar]
- Altay, E.V.; Alatas, B. Performance Comparisons of Socially Inspired Metaheuristic Algorithms on Unconstrained Global Optimization. In Advances in Computer Communication and Computational Sciences; Springer: Singapore, 2019; pp. 163–175. [Google Scholar]
- García, J.; Crawford, B.; Soto, R.; Astorga, G. A clustering algorithm applied to the binarization of Swarm intelligence continuous metaheuristics. Swarm Evol. Comput. 2019, 44, 646–664. [Google Scholar] [CrossRef]
- Sabet, S.; Shokouhifar, M.; Farokhi, F. A comparison between swarm intelligence algorithms for routing problems. Electr. Comput. Eng. Int. J. 2016, 5, 17–33. [Google Scholar]
- Elhoseny, M.; Yuan, X.; Yu, Z.; Mao, C.; El-Minir, H.K.; Riad, A.M. Balancing Energy Consumption in Heterogeneous Wireless Sensor Networks Using Genetic Algorithm. IEEE Commun. Lett. 2015, 19, 2194–2197. [Google Scholar] [CrossRef]
- Shokouhifar, M.; Jalali, A. A new evolutionary based application specific routing protocol for clustered wireless sensor networks. AEU-Int. J. Electron. Commun. 2015, 69, 432–441. [Google Scholar] [CrossRef]
- Eleburuike, I.O.; Adekunle, S.S. Energy Efficient Wireless Sensor Network Using Hierarchical Routing Technique; Blekinge Institute of Technology: Karlskrona, Sweden, 2010. [Google Scholar]
- Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Maui, HI, USA, 7 January 2000. [Google Scholar] [CrossRef]
- Guru, S.M.; Hsu, A.; Halgamuge, S.; Fernando, S. An Extended Growing Self-Organizing Map for Selection of Clusters in Sensor Networks. Int. J. Distrib. Sens. Netw. 2005, 1, 227–243. [Google Scholar] [CrossRef] [Green Version]
- Fanian, F.; Rafsanjani, M.K. Memetic fuzzy clustering protocol for wireless sensor networks: Shuffled frog leaping algorithm. Appl. Soft Comput. 2018, 71, 568–590. [Google Scholar] [CrossRef]
- Amgoth, T.; Jana, P.K. Energy-aware routing algorithm for wireless sensor networks. Comput. Electr. Eng. 2015, 41, 357–367. [Google Scholar] [CrossRef]
- Nykyri, M.; Kuisma, M.; Kärkkäinen, T.J.; Hallikas, J.; Jäppinen, J.; Korpinen, K.; Silventoinen, P. IoT Demonstration Platform for Education and Research. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 22–25 July 2019; Volume 1, pp. 1155–1162. [Google Scholar] [CrossRef]
- Docker, I. Docker. 2017. Available online: https://www.docker.com/what-docker (accessed on 30 September 2020).
- Composer, H. Hyperledger Composer Documentation. Linux Found. 2018. Available online: https://hyperledger.github.io/composer/latest/introduction/introduction.html (accessed on 1 September 2020).
- Performance, H.; Group, S.W. Hyperledger Blockchain Performance Metrics. White paper. 2018, Volume 1. Available online: https://www.hyperledger.org/wpcontent/uploads/2018/10/HL_Whitepaper_Metrics_PDF_V1 (accessed on 30 September 2020).
- Caliper, H. Hyperledger Caliper Architecture. Electronic Article. 2019. Available online: https://hyperledger.github.io/caliper/docs/2_Architecture (accessed on 15 September 2020).
- Kokoris-Kogias, L.; Gasser, L.; Khoffi, I.; Jovanovic, P.; Gailly, N.; Ford, B. Managing identities using blockchains and CoSi. In Proceedings of the 9th Workshop on Hot Topics in Privacy Enhancing Technologies (HotPETs 2016), Darmstadt, Germany, 19–22 May 2016. [Google Scholar]
- Aitzhan, N.Z.; Svetinovic, D. Security and privacy in decentralized energy trading through multi-signatures, blockchain and anonymous messaging streams. IEEE Trans. Dependable Secur. Comput. 2016, 15, 840–852. [Google Scholar] [CrossRef]
- Wang, K.; Shao, Y.; Shu, L.; Zhu, C.; Zhang, Y. Mobile big data fault-tolerant processing for ehealth networks. IEEE Netw. 2016, 30, 36–42. [Google Scholar] [CrossRef]
- Wan, J.; Li, J.; Imran, M.; Li, D. A blockchain-based solution for enhancing security and privacy in smart factory. IEEE Trans. Ind. Informatics 2019, 15, 3652–3660. [Google Scholar] [CrossRef]
- Lu, Q.; Xu, X. Adaptable blockchain-based systems: A case study for product traceability. IEEE Softw. 2017, 34, 21–27. [Google Scholar] [CrossRef]
- Li, Z.; Kang, J.; Yu, R.; Ye, D.; Deng, Q.; Zhang, Y. Consortium blockchain for secure energy trading in industrial internet of things. IEEE Trans. Ind. Informatics 2017, 14, 3690–3700. [Google Scholar] [CrossRef] [Green Version]
- Esposito, C.; Santis, A.; Tortora, G.; Chang, H.; Choo, K. Blockchain: A panacea for healthcare cloud-based data security and privacy? IEEE Cloud Comput. 2018, 5, 31–37. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hossain, M.S.; Loukas, G.; Hassanain, E.; Rahman, S.S.; Alhamid, M.F.; Guizani, M. Blockchain-based mobile edge computing framework for secure therapy applications. IEEE Access 2018, 6, 72469–72478. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Yang, T. Blockchain-enabled security in electric vehicles cloud and edge computing. IEEE Netw. 2018, 32, 78–83. [Google Scholar] [CrossRef]
- Kang, J.; Yu, R.; Huang, X.; Wu, M.; Maharjan, S.; Xie, S.; Zhang, Y. Blockchain for secure and efficient data sharing in vehicular edge computing and networks. IEEE Internet Things J. 2018, 6, 4660–4670. [Google Scholar] [CrossRef]
GAs Parameters | Value |
---|---|
Population Size | 30 |
Selection Type | Proportional Selection |
Recombination Percentage | 0.1 |
Crossover Percentage | 0.5 |
Crossover Type | One-Point |
Mutation Percentage | 0.4 |
Mutation Rate | 0.05 |
Generation Size | 500 |
SA Parameters | Value |
---|---|
Max Iter SA | 1000 |
T initial | 0.001 |
T final | 0.000 |
Pchange Max | 0.05 |
Pchange Min | 0.02 |
Name | Send Rate (TPS) | Max Latency (s) | Min Latency (s) | Avg Latency (s) | Throughput (TPS) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Blockchain | H | E | H | E | H | E | H | E | H | E |
Open | 20.2 | 22.7 | 0.38 | 7.05 | 0.04 | 2.12 | 0.18 | 4.58 | 20.1 | 10 |
Query | 10 | 10.2 | 0.07 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 10 | 10.2 |
Transfer | 10 | 10.7 | 0.38 | 7.13 | 0.06 | 2.07 | 0.19 | 4.63 | 10 | 6.7 |
Ref | IoT Application | Security Challenges | Implemented Consensus | Implemented Blockchain | |||
---|---|---|---|---|---|---|---|
Framework Privacy | Heterogeneity and Flexibility | Authentication | Scalability | ||||
[38] | Smart Grids, Smart Cities | Yes | Yes | PoW | Private | ||
[71] | Microgrids, Smart Grids, Vehicle-to-Grids | Yes | PoW | Consortium | |||
[72] | Microgrids, Smart Grid | Yes | PoC | Private | |||
[73] | Big Data, eHealth | Yes | Yes | PoW | Public | ||
[74] | Industrial IoT | Yes | Yes | PoW | Private | ||
[75] | Smart Factory, Supply Chain | Yes | PoS | Consortium | |||
[76] | Industrial IoT, Energy Harvesting networks | Yes | Yes | PoW | Consortium | ||
[77] | eHealth | Yes | PoW | Public | |||
[78] | Mobile edge computing, eHealth | Yes | Yes | PoC | Permissioned | ||
[79] | Cloud computing, V2X | Yes | Yes | PoS | Consortium | ||
[80] | Vehicular Edge Computing | Yes | Yes | PoW | Consortium | ||
proposed | 5G MBS | Yes | Yes | Yes | Yes | PBFT, PoC | Consortium |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Honar Pajooh, H.; Rashid, M.; Alam, F.; Demidenko, S. Multi-Layer Blockchain-Based Security Architecture for Internet of Things. Sensors 2021, 21, 772. https://doi.org/10.3390/s21030772
Honar Pajooh H, Rashid M, Alam F, Demidenko S. Multi-Layer Blockchain-Based Security Architecture for Internet of Things. Sensors. 2021; 21(3):772. https://doi.org/10.3390/s21030772
Chicago/Turabian StyleHonar Pajooh, Houshyar, Mohammad Rashid, Fakhrul Alam, and Serge Demidenko. 2021. "Multi-Layer Blockchain-Based Security Architecture for Internet of Things" Sensors 21, no. 3: 772. https://doi.org/10.3390/s21030772
APA StyleHonar Pajooh, H., Rashid, M., Alam, F., & Demidenko, S. (2021). Multi-Layer Blockchain-Based Security Architecture for Internet of Things. Sensors, 21(3), 772. https://doi.org/10.3390/s21030772