Artificial-Intelligence-Enhanced Mobile System for Cardiovascular Health Management
Abstract
:1. Introduction
- An ECG is difficult to acquire outside a hospital. In addition, ECG data are easily distorted by environmental noise, other electrical interference, or even irrelevant electrical human physiology activities. Meanwhile, high-quality ECG recorders are extremely large to be carried on a daily basis. If an ECG is noisy, it would only provide insufficient information as to a photoplethysmogram (PPG), which is an optically obtained plethysmogram that can be collected from a Mi Band or Apple Watch (before series 4). Although a PPG can detect rhythm-level abnormalities such as Atrial Fibrillation (AF), it cannot provide useful information regarding heartbeat level abnormalities [13] such as Premature Ventricular Contraction (PVC).
- Most existing ECG monitors can only record data and do not have sufficient analytical capability. Hence, a vast majority of ECG data remain stored in databases that are never used again [14]. Existing diagnostic pattern recognition methods are quite complicated and require significant effort for their development. Hence, only a few institutions use such diagnostic functions in low-priced devices for use outside a hospital setting.
- ECG diagnostic results are difficult to understand by ordinary users. Although there are a few cloud services that can provide analysis capabilities [15], the results include professional terminology, requiring a professional to interpret. Such terms are quite difficult to understand by typical users, thus, it is difficult to encourage ordinary people to use such tools for cardiovascular health management. Such devices require further development to make them acceptable to ordinary users.
- We developed a mobile system with high-quality data acquisition. Our system consists of hardware devices and a cloud service. The hardware devices are sufficiently lightweight and can be carried throughout the day. Cloud services can be accessed anywhere using the Internet. Data quality is guaranteed by both the hardware design and software algorithms.
- We improved the mobile system using advanced AI algorithms to provide accurate ECG diagnostic results. Our cardiovascular health management system can provide abundant diagnostic reports for ordinary people and doctors. We also deploy it as a cloud service. The entire medical industry can be made more efficient by equipping their ECGs with our cloud service.
- The user interface of the system application is very easy possible. In detail, we built a lightweight mobile app based on the WeChat Mini Program, allowing users to learn how to use the system with little expense. In addition, we created a new heart health score to quantitatively understand the ECG diagnostic results in a similar way to how we interpret body temperature or blood pressure.
2. Methods
2.1. Overview
2.2. Data Acquisition
2.2.1. Hardware Design
2.2.2. Improved Data Quality
2.3. Automatic ECG Analysis with Artificial Intelligence (AI) and Pattern Recognition
2.3.1. Diagnosing an ECG through Deep Neural Network
2.3.2. Measuring ECG through Pattern Recognition
2.3.3. Deployment as a Cloud Service
2.4. Design of Cardiovascular Health Management
2.4.1. Passive Health Management
2.4.2. Active Health Management
3. Results and Discussion
3.1. Data-Quality Improvement
3.2. Efficiency
3.3. Performance of Automatic ECG Analysis
3.4. Demonstration
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AE | Atrial Escape |
AF | Atrial Fibrillation |
AFL | Atrial Flutter |
AVBI | First Degree Atrioventricular Block |
AVBII | Second Degree Atrioventricular Block |
AVBIII | Third Degree Atrioventricular Block |
BLE | Bluetooth low energy |
CNN | Convolutional Neural Network |
ECGs | Electrocardiograms |
EEGs | Electroencephalograms |
EHRs | Electronic health records |
EMGs | Electromyograms |
HRV | Heart rate variation |
IoT | Internet of Things |
JE | Junctional Escape |
LBBB | Left Bundle Branch Block |
PAC | Premature Atrial Contraction |
PCB | Printed circuit board |
PJC | Premature Junctional Contraction |
PPG | Photoplethysmogram |
PVC | Premature Ventricular Contraction |
RBBB | Right Bundle Branch Block |
RNN | Recurrent Neural Network |
ROC | Receiver operating characteristic |
ROC–AUC | Area Under the Receiver Operating Characteristic Curve |
SN | Sinus Rhythm |
SNA | Sinus Arrhythmia |
SNB | Sinus Bradycardia |
SNT | Sinus Tachycardia |
SVT | Supraventricular Tachycardia |
VE | Ventricular Escape |
VT | Ventricular Tachycardia |
WPW | Wolff-Parkinson-White Syndrome |
References
- Hu, S.; Gao, R.; Liu, L.; Zhu, M.; Wang, W.; Wang, Y.; Wu, Z.; Li, H.; Gu, D.; Yang, Y.; et al. Summary of the 2018 Report on Cardiovascular Diseases in China. Chin. Circ. J. 2019, 34, 209–220. [Google Scholar]
- Bath, P.A. Health informatics: Current issues and challenges. J. Inf. Sci. 2008, 34, 501–518. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.; Gao, G.; DesRoches, C.; Jha, A.K. Research commentary—The digital transformation of healthcare: Current status and the road ahead. Inf. Syst. Res. 2010, 21, 796–809. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.; Meng, Q.; Li, Y.; Liang, M.; Zheng, K. The evolution of medical informatics in China: A retrospective study and lessons learned. Int. J. Med. Inform. 2016, 92, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Yip, W.; Fu, H.; Chen, A.T.; Zhai, T.; Jian, W.; Xu, R.; Pan, J.; Hu, M.; Zhou, Z.; Chen, Q.; et al. 10 years of health-care reform in China: Progress and gaps in universal health coverage. Lancet 2019, 394, 1192–1204. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; et al. Heart Disease and Stroke Statistics 2018 Update: A Report from the American Heart Association. Circulation 2018, 137, e67–e492. [Google Scholar] [CrossRef] [PubMed]
- Camm, A.J.; Kirchhof, P.; Lip, G.Y.; Schotten, U.; Savelieva, I.; Ernst, S.; Van Gelder, I.C.; Al-Attar, N.; Hindricks, G.; Prendergast, B.; et al. Guidelines for the Management of Atrial Fibrillation: The Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur. Heart J. 2010, 31, 2369–2429. [Google Scholar] [PubMed]
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Das, S.R.; de Ferranti, S.; Després, J.P.; Fullerton, H.J.; et al. Heart disease and stroke statistics—2016 Update: A report from the American Heart Association. Circulation 2015, 133, e38–e360. [Google Scholar] [CrossRef] [PubMed]
- Al-Khatib, S.M.; Stevenson, W.G.; Ackerman, M.J.; Bryant, W.J.; Callans, D.J.; Curtis, A.B.; Deal, B.J.; Dickfeld, T.; Field, M.E.; Fonarow, G.C.; et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 2018, 72, e91–e220. [Google Scholar]
- Lip, G.; Fauchier, L.; Freedman, S.; Gelder, I.V.; Natale, A.; Gianni, C.; Nattel, S.; Potpara, T.; Rienstra, M.; Tse, H.; et al. Atrial Fibrillation. Nat. Rev. Dis. Prim. 2016, 2, 16016. [Google Scholar] [CrossRef] [Green Version]
- Yanowitz, F.G. Introduction to ECG Interpretation; LDS Hospital and Intermountain Medical Center: Salt Lake City, UT, USA, 2012. [Google Scholar]
- Garcia, T.B. Introduction to 12-Lead ECG: The Art of Interpretation; Jones & Bartlett Learning: Burlington, MA, USA, 2014. [Google Scholar]
- Lu, G.; Yang, F.; Taylor, J.; Stein, J. A comparison of photoplethysmography and ECG recording to analyse heart rate variability in healthy subjects. J. Med. Eng. Technol. 2009, 33, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Obermeyer, Z.; Emanuel, E.J. Predicting the future—Big data, machine learning, and clinical medicine. N. Engl. J. Med. 2016, 375, 1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, S.; Fu, Z.; Zhou, R.; Yu, J.; Li, Y.; Wang, K.; Cheng, G. CardioLearn: A Cloud Deep Learning Service for Cardiac Disease Detection from Electrocardiogram. In Proceedings of the Companion Proceedings of the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; pp. 148–152. [Google Scholar]
- Nyquist, H. Certain topics in telegraph transmission theory. Trans. Am. Inst. Electr. Eng. 1928, 47, 617–644. [Google Scholar] [CrossRef]
- Hong, S.; Xiao, C.; Ma, T.; Li, H.; Sun, J. MINA: Multilevel knowledge-guided attention for modeling electrocardiography signals. In Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019; AAAI Press: Menlo Park, CA, USA, 2019; pp. 5888–5894. [Google Scholar]
- Gomez, C.; Oller, J.; Paradells, J. Overview and evaluation of bluetooth low energy: An emerging low-power wireless technology. Sensors 2012, 12, 11734–11753. [Google Scholar] [CrossRef]
- Levkov, C.; Mihov, G.; Ivanov, R.; Daskalov, I.; Christov, I.; Dotsinsky, I. Removal of power-line interference from the ECG: A review of the subtraction procedure. BioMed Eng. OnLine 2005, 4, 50. [Google Scholar] [CrossRef] [Green Version]
- Yazdanpanah, H.; Diniz, P.S.; Lima, M.V. Feature Adaptive Filtering: Exploiting Hidden Sparsity. IEEE Trans. Circuits Syst. I Regul. Pap. 2020. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G.E. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Hong, S.; Zhou, Y.; Shang, J.; Xiao, C.; Sun, J. Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review. Comput. Biol. Med. 2020, 103801. [Google Scholar] [CrossRef]
- Johnson, K.W.; Soto, J.T.; Glicksberg, B.S.; Shameer, K.; Miotto, R.; Ali, M.; Ashley, E.; Dudley, J.T. Artificial intelligence in cardiology. J. Am. Coll. Cardiol. 2018, 71, 2668–2679. [Google Scholar] [CrossRef]
- Litjens, G.; Ciompi, F.; Wolterink, J.M.; de Vos, B.D.; Leiner, T.; Teuwen, J.; Išgum, I. State-of-the-Art Deep Learning in Cardiovascular Image Analysis. JACC Cardiovasc. Imaging 2019, 12, 1549–1565. [Google Scholar] [CrossRef]
- Mincholé, A.; Camps, J.; Lyon, A.; Rodríguez, B. Machine learning in the electrocardiogram. J. Electrocardiol. 2019, 57, S61–S64. [Google Scholar] [CrossRef] [PubMed]
- Parvaneh, S.; Rubin, J. Electrocardiogram monitoring and interpretation: From traditional machine learning to deep learning, and their combination. In Proceedings of the 2018 IEEE Computing in Cardiology Conference (CinC), Maastricht, The Netherlands, 23–26 September 2018; Volume 45, pp. 1–4. [Google Scholar]
- Parvaneh, S.; Rubin, J.; Babaeizadeh, S.; Xu-Wilson, M. Cardiac arrhythmia detection using deep learning: A review. J. Electrocardiol. 2019, 57, S70–S74. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Wu, M.; Zhou, Y.; Wang, Q.; Shang, J.; Li, H.; Xie, J. ENCASE: An ENsemble ClASsifiEr for ECG classification using expert features and deep neural networks. In Proceedings of the 2017 IEEE Computing in Cardiology (cinc), Rennes, France, 24–27 September 2017; pp. 1–4. [Google Scholar]
- Hong, S.; Zhou, Y.; Wu, M.; Shang, J.; Wang, Q.; Li, H.; Xie, J. Combining deep neural networks and engineered features for cardiac arrhythmia detection from ECG recordings. Physiol. Meas. 2019, 40, 054009. [Google Scholar] [CrossRef] [PubMed]
- Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019, 25, 65. [Google Scholar] [CrossRef] [PubMed]
- Raghunath, S.; Cerna, A.E.U.; Jing, L.; Stough, J.; Hartzel, D.N.; Leader, J.B.; Kirchner, H.L.; Stumpe, M.C.; Hafez, A.; Nemani, A.; et al. Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network. Nat. Med. 2020, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Attia, Z.I.; Kapa, S.; Lopez-Jimenez, F.; McKie, P.M.; Ladewig, D.J.; Satam, G.; Pellikka, P.A.; Enriquez-Sarano, M.; Noseworthy, P.A.; Munger, T.M.; et al. Screening for cardiac contractile dysfunction using an artificial intelligence—Enabled electrocardiogram. Nat. Med. 2019, 25, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Attia, Z.I.; Noseworthy, P.A.; Lopez-Jimenez, F.; Asirvatham, S.J.; Deshmukh, A.J.; Gersh, B.J.; Carter, R.E.; Yao, X.; Rabinstein, A.A.; Erickson, B.J.; et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: A retrospective analysis of outcome prediction. Lancet 2019, 394, 861–867. [Google Scholar] [CrossRef]
- Tison, G.H.; Zhang, J.; Delling, F.N.; Deo, R.C. Automated and interpretable patient ECG profiles for disease detection, tracking, and discovery. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e005289. [Google Scholar] [CrossRef]
- Han, X.; Hu, Y.; Foschini, L.; Chinitz, L.; Jankelson, L.; Ranganath, R. Deep learning models for electrocardiograms are susceptible to adversarial attack. Nat. Med. 2020, 1–4. [Google Scholar] [CrossRef]
- Ribeiro, A.H.; Ribeiro, M.H.; Paixão, G.M.; Oliveira, D.M.; Gomes, P.R.; Canazart, J.A.; Ferreira, M.P.; Andersson, C.R.; Macfarlane, P.W.; Wagner, M., Jr.; et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Hong, S.; Shang, J.; Wu, M.; Wang, Q.; Li, H.; Xie, J. K-margin-based Residual-Convolution-Recurrent Neural Network for Atrial Fibrillation Detection. In Proceedings of the Tweenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI), Macao, China, 10–16 August 2019; pp. 6057–6063. [Google Scholar]
- Zhou, Y.; Hong, S.; Shang, J.; Wu, M.; Wang, Q.; Li, H.; Xie, J. Addressing Noise and Skewness in Interpretable Health-Condition Assessment by Learning Model Confidence. Sensors 2020, 20, 7307. [Google Scholar] [CrossRef] [PubMed]
- Erdenebayar, U.; Kim, Y.J.; Park, J.U.; Joo, E.Y.; Lee, K.J. Deep learning approaches for automatic detection of sleep apnea events from an electrocardiogram. Comput. Methods Programs Biomed. 2019, 180, 105001. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Pan, W.; Li, Y.; Jiang, Q.; Liu, G. A method to detect sleep apnea based on deep neural network and hidden markov model using single-lead ECG signal. Neurocomputing 2018, 294, 94–101. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, D.; Zeng, X. HeartID: A multiresolution convolutional neural network for ECG-based biometric human identification in smart health applications. IEEE Access 2017, 5, 11805–11816. [Google Scholar] [CrossRef]
- Labati, R.D.; Muñoz, E.; Piuri, V.; Sassi, R.; Scotti, F. Deep-ECG: Convolutional neural networks for ECG biometric recognition. Pattern Recognit. Lett. 2019, 126, 78–85. [Google Scholar] [CrossRef]
- Li, Y.; Pang, Y.; Wang, K.; Li, X. Toward improving ECG biometric identification using cascaded convolutional neural networks. Neurocomputing 2020, 391, 83–95. [Google Scholar] [CrossRef]
- Hong, S.; Wang, C.; Fu, Z. CardioID: Learning to identification from electrocardiogram data. Neurocomputing 2020, 412, 11–18. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 630–645. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Lundberg, G. When to panic over abnormal values. MLO Med. Lab. Obs. 1972, 4, 47–54. [Google Scholar]
- Tillman, J.; Barth, J. A survey of laboratory’critical (alert) limits’ in the UK. Ann. Clin. Biochem. 2003, 40, 181–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dighe, A.S.; Jones, J.B.; Parham, S.; Lewandrowski, K.B. Survey of critical value reporting and reduction of false-positive critical value results. Arch. Pathol. Lab. Med. 2008, 132, 1666–1671. [Google Scholar] [PubMed]
- Foundation, A.S. Apache JMeter. Available online: https://jmeter.apache.org (accessed on 1 October 2019).
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing Systems; Proceedings of Machine Learning Research: New York, NY, USA, 2017; pp. 5998–6008. [Google Scholar]
Group | Subgroup | Name | Abbr. |
---|---|---|---|
Sinus Rhythm | Sinus Rhythm | Sinus Rhythm | SN |
Sinus Abnormality | Sinus Arrhythmia | SNA | |
Sinus Tachycardia | SNT | ||
Sinus Bradycardia | SNB | ||
Tachyarrhythmia | Premature Beat | Premature Ventricular Contraction | PVC |
Premature Junctional Contraction | PJC | ||
Premature Atrial Contraction | PAC | ||
Tachycardia | Ventricular Tachycardia | VT | |
Supraventricular Tachycardia | SVT | ||
Flutter and Fibrillation | Atrial Flutter | AFL | |
Atrial Fibrillation | AF | ||
Pre-excitation | Wolff–Parkinson–White Syndrome | WPW | |
Bradyarrhythmia | Escape Beat | Ventricular Escape | VE |
Atrial Escape | AE | ||
Junctional Escape | JE | ||
Atrioventricular Block | First Degree Atrioventricular Block | AVBI | |
Second Degree Atrioventricular Block | AVBII | ||
Third Degree Atrioventricular Block | AVBIII | ||
Intraventricular Block | Left Bundle Branch Block | LBBB | |
Right Bundle Branch Block | RBBB |
Category | Diagnosis Items (Critical Value) |
---|---|
No Risk | SN (0) |
Medium-low Risk | SNA (2), SNT (5), SNB (5) |
Medium Risk | LBBB (9), PVC (12), PJC (12), PAC (12), RBBB (15) |
Medium-high Risk | WPW (16), VE (16), AE (16), JE (16), AVBI (16), AFL (25), AF (25), AVBII (25) |
High Risk | VT (50), SVT (50), AVBIII (50) |
Abbr. | Accuracy | Precision | Recall | F1 | ROC–AUC |
---|---|---|---|---|---|
SN | 0.9862 | 0.9881 | 0.9978 | 0.9929 | 0.8948 |
SNA | 0.9553 | 0.4977 | 0.6479 | 0.5629 | 0.9564 |
SNT | 0.9888 | 0.8800 | 0.8761 | 0.8780 | 0.9948 |
SNB | 0.9842 | 0.8685 | 0.9413 | 0.9034 | 0.9968 |
PVC | 0.9946 | 0.8659 | 0.8505 | 0.8582 | 0.9852 |
PJC | 0.9977 | 0.1429 | 0.5556 | 0.2273 | 0.9973 |
PAC | 0.9861 | 0.6771 | 0.8320 | 0.7466 | 0.9855 |
VT | 0.9997 | 0.8333 | 0.5556 | 0.6667 | 0.9916 |
SVT | 0.9975 | 0.4865 | 0.5000 | 0.4932 | 0.9894 |
AFL | 0.9984 | 0.7407 | 0.5556 | 0.6349 | 0.9967 |
AF | 0.9974 | 0.8941 | 0.8786 | 0.8863 | 0.9989 |
WPW | 0.9989 | 0.8333 | 0.6944 | 0.7576 | 0.9954 |
VE | 0.9990 | 0.2105 | 1.0000 | 0.3478 | 0.9992 |
AE | 0.9980 | 0.0938 | 0.7500 | 0.1667 | 0.9968 |
JE | 0.9988 | 0.6190 | 0.5652 | 0.5909 | 0.9967 |
AVBI | 0.9963 | 0.6838 | 0.8163 | 0.7442 | 0.9973 |
AVBII | 0.9993 | 0.7778 | 0.4667 | 0.5833 | 0.9967 |
AVBIII | 0.9997 | 0.8750 | 0.7000 | 0.7778 | 0.9974 |
LBBB | 0.9984 | 0.7705 | 0.8246 | 0.7966 | 0.9837 |
RBBB | 0.9911 | 0.8776 | 0.6804 | 0.7665 | 0.9616 |
Supplier | Ours | iRhythm | Apple | Qardio |
Model | E-HA03 | Zio SR Patch | Apple Watch | QardioCore |
User Interface | WeChat Mini-Program | / | iOS | iOS |
Lead | Single-lead | Single-lead | Single-lead | 3-leads |
Carrying | Portable | Patch | Wrist | Chest |
Diagnostic items | SN, SNA, SNT, SNB, PVC, PJC, PAC, VT, SVT, AFL, AF, WPW, VE, AE, JE, AVBI, AVBII, AVBIII, LBBB, RBBB | SN, AF, AFL, VT, SVT, VE, PVC, PAUSE, AVB | SN, AF | SN, AF, SNB, SNT, PAUSE |
Transmission | Bluetooth | / | / | Bluetooth |
Battery | Button Cell | Lithium | Lithium | Lithium |
Size (mm) | 75 × 26 × 6 | 110 × 60 × 20 | / | 185 × 87 × 9 |
Weight | 12 g | 34 g | 56 g | 130 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Z.; Hong, S.; Zhang, R.; Du, S. Artificial-Intelligence-Enhanced Mobile System for Cardiovascular Health Management. Sensors 2021, 21, 773. https://doi.org/10.3390/s21030773
Fu Z, Hong S, Zhang R, Du S. Artificial-Intelligence-Enhanced Mobile System for Cardiovascular Health Management. Sensors. 2021; 21(3):773. https://doi.org/10.3390/s21030773
Chicago/Turabian StyleFu, Zhaoji, Shenda Hong, Rui Zhang, and Shaofu Du. 2021. "Artificial-Intelligence-Enhanced Mobile System for Cardiovascular Health Management" Sensors 21, no. 3: 773. https://doi.org/10.3390/s21030773
APA StyleFu, Z., Hong, S., Zhang, R., & Du, S. (2021). Artificial-Intelligence-Enhanced Mobile System for Cardiovascular Health Management. Sensors, 21(3), 773. https://doi.org/10.3390/s21030773