Affimer-Based Europium Chelates Allow Sensitive Optical Biosensing in a Range of Human Disease Biomarkers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Affimer Expression and Purification
2.2. Affimer Functionalisation
2.3. Fluorimeter Measurement of the Chelated Eu3+ to PMDA Modified Affimer
2.4. Plate Reader Measurement of the Chelated Eu3+ to the PMDA Modified Affimer
3. Results
3.1. Affimer Expression and Purification
3.2. Eu3+ Complex Excitation and Emission Spectra
3.3. Fluorescence of Chelated Eu3+ to PMDA Modified Affimers Complexes by Analyte
3.4. Fluorescence Intensity of Eu3+ Chelated to PMDA Modified Anti-Human Myoglobin Affimer Complex
3.5. Time-Resolved Fluorescence Intensity of Chelated Eu3+ to PMDA Modified Anti-CRP and Anti-CEA Affimer
3.6. Time-Resolved Fluorescence Intensity of Chelated Eu3+ to PMDA Modified Anti-CRP Affimer Complex with EDTA or Citrate
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Slooff, L.H.; Polman, A.; Klink, S.I.; Grave, L.; Van Veggel, F.C.J.M.; Hofstraat, J.W. Concentration effects in the photodegradation of lissamine-functionalized neodymium complexes in polymer waveguides. J. Opt. Soc. Am. B 2001, 18, 1690–1694. [Google Scholar] [CrossRef]
- Rodriguez, L.D.L.; Kovacs, Z. The Synthesis and Chelation Chemistry of DOTA−Peptide Conjugates. Bioconj. Chem. 2008, 19, 391–402. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Ye, Z.-Q.; Jin, D.; Yuan, J. New Class of Tetradentate β-Diketonate-Europium Complexes That Can Be Covalently Bound to Proteins for Time-Gated Fluorometric Application. Bioconj. Chem. 2012, 23, 1244–1251. [Google Scholar] [CrossRef]
- Artizzu, F.; Mercuri, M.L.; Serpe, A.; Deplano, P. NIR-emissive erbium–quinolinolate complexes. Coord. Chem. Rev. 2011, 255, 2514–2529. [Google Scholar] [CrossRef]
- Bünzli, J.-C.G. Benefiting from the Unique Properties of Lanthanide Ions. Acc. Chem. Res. 2006, 39, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Diwu, Z.; Panchuk-Voloshina, N.; Haugland, R.P. A Stable Nonfluorescent Derivative of Resorufin for the Fluorometric Determination of Trace Hydrogen Peroxide: Applications in Detecting the Activity of Phagocyte NADPH Oxidase and Other Oxidases. Anal. Biochem. 1997, 253, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K. Time-resolved luminescence microscopy and microarray using europium chelate labels. Microsc. Sci. Technol. Appl. Educ. 2010, 3, 2129–2136. [Google Scholar]
- Resch-Genger, U. Standardization and Quality Assurance in Fluorescence Measurements II: Bioanalytical and Biomedical Applications; Springer: Berlin/Heidelberg, Germany, 2008; Volume 6. [Google Scholar]
- Moore, E.G.; Samuel, A.P.S.; Raymond, K.N. From Antenna to Assay: Lessons Learned in Lanthanide Luminescence. Accounts Chem. Res. 2009, 42, 542–552. [Google Scholar] [CrossRef] [Green Version]
- Hemmilä, I.; Mukkala, V.-M. Time-Resolution in Fluorometry Technologies, Labels, and Applications in Bioanalytical Assays. Crit. Rev. Clin. Lab. Sci. 2001, 38, 441–519. [Google Scholar] [CrossRef]
- Nishioka, T.; Fukui, K.; Matsumoto, K. Chapter 234: Lanthanide Chelates as Luminescent Labels in Biomedical Analyses. In Including Actinides; Elsevier: Amsterdam, The Netherlands, 2007; Volume 37, pp. 171–216. [Google Scholar]
- Binnemans, K. Interpretation of europium (III) spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Shuvaev, S.; Starck, M.; Parker, D. Responsive, Water-Soluble Europium (III) Luminescent Probes. Chem. Eur. J. 2017, 23, 9974–9989. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, S.; Pope, S.J.A.; Burton-Pye, B.P. Lanthanide Complexes for Luminescence Imaging Applications. Appl. Spectrosc. Rev. 2005, 40, 1–31. [Google Scholar] [CrossRef]
- Bünzli, J.-C.G.; Comby, S.; Chauvin, A.-S.; Vandevyver, C.D. New Opportunities for Lanthanide Luminescence. J. Rare Earths 2007, 25, 257–274. [Google Scholar] [CrossRef]
- Kuriki, K.; Koike, Y.; Okamoto, Y. Plastic Optical Fiber Lasers and Amplifiers Containing Lanthanide Complexes. Chem. Rev. 2002, 102, 2347–2356. [Google Scholar] [CrossRef]
- Singh, K.; Banerjee, S.; Patra, A.K. Photocytotoxic luminescent lanthanide complexes of DTPA–bisamide using quinoline as photosensitizer. RSC Adv. 2015, 5, 107503–107513. [Google Scholar] [CrossRef]
- Terai, T.; Kikuchi, K.; Urano, Y.; Kojima, H.; Nagano, T. A long-lived luminescent probe to sensitively detect arylamine N-acetyltransferase (NAT) activity of cells. Chem. Commun. 2012, 48, 2234–2236. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Rushworth, J.V.; Hirst, N.A.; Millner, P.A. Biosensors for Whole-Cell Bacterial Detection. Clin. Microbiol. Rev. 2014, 27, 631–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rushworth, J.V.; Hirst, N.A. Impedimetric Biosensors for Medical Applications: Current Progress and Challenges; Momentum Press: Stirling, UK, 2013. [Google Scholar]
- Thangsunan, P. Affimer-Based Impedimetric Biosensors: The New Analytical Platform for Biorecognition Applications. Ph.D. Thesis, University of Leeds, Leeds, UK, 2018. [Google Scholar]
- Shamsuddin, S.H.B. Biosensors for Detection of Colorectal Cancer. Ph.D. Thesis, University of Leeds, Leeds, UK, 2018. [Google Scholar]
- Millner, P.A.; Caygill, R.L.; Conroy, D.J.R.; Shahidan, M. Impedance Interrogated Affinity Biosensors for Medical Applications: Novel Targets and Mechanistic Studies. In Biosensors for Medical Applications; Elsevier: Amsterdam, The Netherlands, 2012; pp. 103–134. [Google Scholar]
- Van Dorst, B.; Mehta, J.; Bekaert, K.; Rouah-Martin, E.; De Coen, W.; Dubruel, P.; Blust, R.; Robbens, J. Recent advances in recognition elements of food and environmental biosensors: A review. Biosens. Bioelectron. 2010, 26, 1178–1194. [Google Scholar] [CrossRef]
- Ligler, F.S. Perspective on Optical Biosensors and Integrated Sensor Systems. Anal. Chem. 2008, 81, 519–526. [Google Scholar] [CrossRef] [Green Version]
- Raina, M.; Sharma, R.; Deacon, S.E.; Tiede, C.; Tomlinson, D.; Davies, A.G.; McPherson, M.J.; Wälti, C. Antibody mimetic receptor proteins for label-free biosensors. Analyst 2015, 140, 803–810. [Google Scholar] [CrossRef] [Green Version]
- Binz, H.K.; Plückthun, A. Engineered proteins as specific binding reagents. Curr. Opin. Biotechnol. 2005, 16, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Helma, J.; Cardoso, M.C.; Muyldermans, S.; Leonhardt, H. Nanobodies and recombinant binders in cell biology. J. Cell Biol. 2015, 209, 633–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deffar, K.; Shi, H.; Li, L.; Wang, X.; Zhu, X. Nanobodies-the new concept in antibody engineering. Afr. J. Biotechnol. 2009, 8, 2645–2652. [Google Scholar] [CrossRef]
- Skerra, A. Alternative non-antibody scaffolds for molecular recognition. Curr. Opin. Biotechnol. 2007, 18, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Werner, R.G. Economic aspects of commercial manufacture of biopharmaceuticals. J. Biotechnol. 2004, 113, 171–182. [Google Scholar] [CrossRef]
- Tiede, C.; Tang, A.A.S.; Deacon, S.E.; Mandal, U.; Nettleship, J.E.; Owen, R.L.; George, S.E.; Harrison, D.J.; Owens, R.J.; Tomlinson, D.C.; et al. Adhiron: A stable and versatile peptide display scaffold for molecular recognition applications. Protein Eng. Des. Sel. 2014, 27, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Woodman, R.; Yeh, J.T.-H.; Laurenson, S.; Ferrigno, P.K. Design and Validation of a Neutral Protein Scaffold for the Presentation of Peptide Aptamers. J. Mol. Biol. 2005, 352, 1118–1133. [Google Scholar] [CrossRef]
- Zhurauski, P.; Arya, S.K.; Jolly, P.; Tiede, C.; Tomlinson, D.C.; Ferrigno, P.K.; Estrela, P. Sensitive and selective Affimer-functionalised interdigitated electrode-based capacitive biosensor for Her4 protein tumour biomarker detection. Biosens. Bioelectron. 2018, 108, 1–8. [Google Scholar] [CrossRef]
- Tiede, C.; Bedford, R.; Heseltine, S.J.; Smith, G.; Wijetunga, I.; Ross, R.; Alqallaf, D.; Roberts, A.P.; Balls, A.; Curd, A.; et al. Affimer proteins are versatile and renewable affinity reagents. eLife 2017, 6, 24903. [Google Scholar] [CrossRef]
- Bedford, R.; Tiede, C.; Hughes, R.; Curd, A.; McPherson, M.J.; Peckham, M.; Tomlinson, D.C. Alternative reagents to antibodies in imaging applications. Biophys. Rev. 2017, 9, 299–308. [Google Scholar] [CrossRef]
- Wang, S.X.; Acha, D.; Shah, A.J.; Hills, F.; Roitt, I.; Demosthenous, A.; Bayford, R. Detection of the tau protein in human serum by a sensitive four-electrode electrochemical biosensor. Biosens. Bioelectron. 2017, 92, 482–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, R.; Deacon, S.; Nowak, D.; George, S.; Szymonik, M.; Tang, A.; Tomlinson, D.; Davies, A.; McPherson, M.J.; Wälti, C. Label-free electrochemical impedance biosensor to detect human interleukin-8 in serum with sub-pg/ml sensitivity. Biosens. Bioelectron. 2016, 80, 607–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrigno, P.K. Non-antibody protein-based biosensors. Essays Biochem. 2016, 60, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Mohamad, N.R.; Marzuki, N.H.C.; Buang, N.A.; Huyop, F.; Wahab, R.A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220. [Google Scholar] [CrossRef]
- Landry, J.P.; Ke, Y.; Yu, G.-L.; Zhu, X. Measuring affinity constants of 1450 monoclonal antibodies to peptide targets with a microarray-based label-free assay platform. J. Immunol. Methods 2015, 417, 86–96. [Google Scholar] [CrossRef] [Green Version]
- Kakkar, T.; Thomas, N.; Kumi-Barimah, E.; Jose, G.; Saha, S. Photoluminescence intensity ratio of Eu-conjugated lactates-A simple optical imaging technique for biomarker analysis for critical diseases. J. Biophotonics 2017, 11, e201700199. [Google Scholar] [CrossRef] [Green Version]
- Pershagen, E.; Nordholm, J.; Borbas, K.E. Luminescent Lanthanide Complexes with Analyte-Triggered Antenna Formation. J. Am. Chem. Soc. 2012, 134, 9832–9835. [Google Scholar] [CrossRef]
- Szíjjártó, C.; Pershagen, E.; Ilchenko, N.O.; Borbas, K.E. A Versatile Long-Wavelength-Absorbing Scaffold for Eu-Based Responsive Probes. Chem. Eur. J. 2013, 19, 3099–3109. [Google Scholar] [CrossRef]
- Peng, B.; Xian, M. Fluorescent Probes for Hydrogen Sulfide Detection. Asian J. Org. Chem. 2014, 3, 914–924. [Google Scholar] [CrossRef]
- Tropiano, M.; Faulkner, S. A lanthanide based sensor for the time-gated detection of hydrogen sulfide. Chem. Commun. 2014, 50, 4696–4698. [Google Scholar] [CrossRef]
- Thorson, M.K.; Ung, P.; Leaver, F.M.; Corbin, T.S.; Tuck, K.L.; Graham, B.; Barrios, A.M. Lanthanide complexes as luminogenic probes to measure sulfide levels in industrial samples. Anal. Chim. Acta 2015, 896, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Pazos, E.; Torrecilla, D.; López, M.V.; Castedo, L.; Mascareñas, J.L.; Vidal, A.; Vázquez, M.E. Cyclin A Probes by Means of Intermolecular Sensitization of Terbium-Chelating Peptides. J. Am. Chem. Soc. 2008, 130, 9652–9653. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, T.; Taki, M.; Kodan, A.; Kato, H.; Yamamoto, Y. Selective labeling of tag-fused protein by tryptophan-sensitized luminescence of a terbium complex. Chem. Commun. 2009, 2009, 3196–3198. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, J.; Wang, G.; Ye, Z.; Zhang, W.; Jin, D.; Yuan, J.; Piper, J.A. Development of a Visible-Light-Sensitized Europium Complex for Time-Resolved Fluorometric Application. Anal. Chem. 2010, 82, 2529–2535. [Google Scholar] [CrossRef] [PubMed]
- Tsukube, H.; Noda, Y.; Shinoda, S. Poly(arginine)-Selective Coprecipitation Properties of Self-Assembling Apoferritin and Its Tb3+ Complex: A New Luminescent Biotool for Sensing of Poly(arginine) and Its Protein Conjugates. Chem. Eur. J. 2010, 16, 4273–4278. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, X.; Wang, Y.; Guo, Z. Terbium (III) complex as a luminescent sensor for human serum albumin in aqueous solution. Chem. Commun. 2011, 47, 8127–8129. [Google Scholar]
- Terai, T.; Ito, H.; Kikuchi, K.; Nagano, T. Salicylic-Acid Derivatives as Antennae for Ratiometric Luminescent Probes Based on Lanthanide Complexes. Chem. Eur. J. 2012, 18, 7377–7381. [Google Scholar] [CrossRef]
- Wang, X.; Chang, H.; Xie, J.; Zhao, B.; Liu, B.; Xu, S.; Pei, W.; Ren, N.; Huang, L.; Huang, W. Recent developments in lanthanide-based luminescent probes. Coord. Chem. Rev. 2014, 273, 201–212. [Google Scholar] [CrossRef]
- Flora, S.J.S.; Pachauri, V. Chelation in Metal Intoxication. Int. J. Environ. Res. Public Health 2010, 7, 2745–2788. [Google Scholar] [CrossRef] [Green Version]
- Banfi, G.; Salvagno, G.L.; Lippi, G. The role of ethylenediamine tetraacetic acid (EDTA) as in vitro anticoagulant for diagnostic purposes. Clin. Chem. Lab. Med. 2007, 45, 565–576. [Google Scholar] [CrossRef]
- Al-Enezi, E.A. Developing An Europium-Based Optical Biosensor for Detection of Protein Biomarkers. Ph.D. Thesis, University of Leeds, Leeds, UK, 2020. [Google Scholar]
- Johnson, A.; Song, Q.; Ferrigno, P.K.; Bueno, P.R.; Davis, J.J. Sensitive Affimer and Antibody Based Impedimetric Label-Free Assays for C-Reactive Protein. Anal. Chem. 2012, 84, 6553–6560. [Google Scholar] [CrossRef] [PubMed]
Biomarker | Molecular Weight (KDa) | % ∆ Fluorescence Counts of Biomarker | % ∆ Fluorescence Counts of Biomarker + Polyclonal Ab |
---|---|---|---|
Myoglobin | 17 | 7.44 ± 1.17 | 17.25 ± 2.37 |
GFAP | 55 | 4.66 ± 0.65 | 12.30 ± 0.46 |
CRP | 119 | 10.05 ± 2.46 | 22.08 ± 0.85 |
CEA | 200 | 17.05 ± 1.50 | 36.31 ± 6.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Enezi, E.; Vakurov, A.; Eades, A.; Ding, M.; Jose, G.; Saha, S.; Millner, P. Affimer-Based Europium Chelates Allow Sensitive Optical Biosensing in a Range of Human Disease Biomarkers. Sensors 2021, 21, 831. https://doi.org/10.3390/s21030831
Al-Enezi E, Vakurov A, Eades A, Ding M, Jose G, Saha S, Millner P. Affimer-Based Europium Chelates Allow Sensitive Optical Biosensing in a Range of Human Disease Biomarkers. Sensors. 2021; 21(3):831. https://doi.org/10.3390/s21030831
Chicago/Turabian StyleAl-Enezi, Eiman, Alexandre Vakurov, Amy Eades, Mingyu Ding, Gin Jose, Sikha Saha, and Paul Millner. 2021. "Affimer-Based Europium Chelates Allow Sensitive Optical Biosensing in a Range of Human Disease Biomarkers" Sensors 21, no. 3: 831. https://doi.org/10.3390/s21030831
APA StyleAl-Enezi, E., Vakurov, A., Eades, A., Ding, M., Jose, G., Saha, S., & Millner, P. (2021). Affimer-Based Europium Chelates Allow Sensitive Optical Biosensing in a Range of Human Disease Biomarkers. Sensors, 21(3), 831. https://doi.org/10.3390/s21030831