An Optical Fiber Sensor Based on Fluorescence Lifetime for the Determination of Sulfate Ions
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials and Apparatus
2.2. Fluorescence Probe Detection of AMDP
2.3. Preparation of Sensitive Membrane
2.4. Sulfate Ion Detection with the Optical Fiber Sensor
3. Results and Discussion
3.1. Characterization of the CA Membrane
3.2. Properties of the Fluorescent Complex
3.3. Response of the Fluorescent Probe when Detecting Sulfate Ions
3.4. The Complexation Ratio and Fluorescence Lifetime of the Fluorescent Complex
3.5. Reliability of the Sensitive Membrane
3.6. Detection of Sulfate Ions with the Optical Fiber Sensor
3.7. Selective Experiment of the Optical Fiber Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.R.; Sun, M.; Hou, D.S. External sulfate attack to reinforced concrete under drying-wetting cycles and loading condition: Numerical simulation and experimental validation by ultrasonic array method. Constr. Build. Mater. 2017, 139, 365–373. [Google Scholar] [CrossRef]
- Clifton, J.R.; Pommersheim, J.M. Sulfate Attack of Cementitious Materials: Volumetric Relations and Expansions; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1994; pp. 22–25.
- Little, D.N.; Herbert, B.; Kunagalli, S.N. Ettringite Formation in Lime-Treated Soils. Transp. Res. Rec. J. Transp. Res. Board 2005, 1936, 51–59. [Google Scholar] [CrossRef]
- Yazici, B.; Erbil, M. The effects of sulphate ion on concrete and reinforced concrete. Cem. Concr. Res. 1997, 27, 1271–1279. [Google Scholar]
- Ma, B.G.; Gao, X.J.; Byars, E.A. Thaumasite formation in a tunnel of Bapanxia Dam in Western China. Cem. Concr. Res. 2006, 36, 716–722. [Google Scholar] [CrossRef]
- Santhanam, M.; Cohen, M.D.; Olek, J. Sulfate attack research-Whither now? Cem. Concr. Res. 2001, 31, 845–851. [Google Scholar] [CrossRef]
- Neville, A. The confused world of sulfate attack on concrete. Cem. Concr. Res. 2004, 34, 1275–1296. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.Q.; Ye, B.C. Colorimetric assay for sulfate using positively-charged gold nanoparticles and its application for real-time monitoring of redox process. Analyst 2011, 136, 4558–4562. [Google Scholar] [CrossRef]
- Tomita, K.; Ishioka, T.; Harata, A. Development of an anion probe: Detection of sulfate ion by two-photon fluorescence of gold nanoparticles. Anal. Sci. 2012, 28, 1139–1144. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.; Chen, J.; Ye, W.; Guo, J.; Zhang, X.; Zheng, R. Investigation of Two Novel Approaches for Detection of Sulfate Ion and Methane Dissolved in Sediment Pore Water Using Raman Spectroscopy. Sensors 2015, 15, 12377–12388. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Ye, W.; Guo, J.; Luo, Z.; Li, Y. Diurnal Variability in Chlorophyll-a, Carotenoids, CDOM and SO42− Intensity of Offshore Seawater Detected by an Underwater Fluorescence-Raman Spectral System. Sensors 2016, 16, 1082. [Google Scholar] [CrossRef] [Green Version]
- Dedkov, Y.M.; Korsakova, N.V.; Sychkova, V.A. New metallochromic indicator for barium: Determination of sulfate in water and soil extracts. Am. J. Anal. Chem. 2006, 61, 1154–1162. [Google Scholar] [CrossRef]
- Lutze, O.; Roß, B.; Cammann, K. Gran’s plot titration and flow injection titration of sulfate in ground and drinking water with a barium ion-selective electrode. Fresenius’ J. Anal. Chem. 1994, 350, 630–632. [Google Scholar] [CrossRef]
- Chattaraj, S.; Das, A.K. Indirect atomic absorption spectrometric determination of sulfate in human blood serum. Analyst 1992, 117, 413. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.P.; Cheng, X.S.; Ge, J.P. Indirect determination of trace sulfate ion in sea water by graphite furnace atomic absorption spectrometry. Chin. J. Spectrosc. Lab. 2006, 23, 800–802. [Google Scholar]
- Friedhelm, B.; Günther, S.; Karl-Heinz, J. A rapid and sensitive ion chromatographic technique for the determination of sulfate and sulfate reduction rates in freshwater lake sediments. FEMS Microbiol. Ecol. 1991, 85, 23–30. [Google Scholar]
- Dick, W.A.; Tabatabai, M.A. Ion Chromatographic Determination of Sulfate and Nitrate in Soils. Soil Sci. Soc. Am. J. 1979, 43, 899. [Google Scholar] [CrossRef]
- Chang, C.M.; Huang, H.J. Indirect determination of sulfate by atomic absorption spectrophotometry. J. Chin. Chem. Soc. 1993, 40, 425–428. [Google Scholar] [CrossRef]
- Chimpalee, N.; Chimpalee, D.; Suparuknari, S.; Boonyanitchayakul, B.; Burns, D.T. Flow-injection spectrofluorimetric determination of sulphate using calcein and zirconium. Anal. Chim. Acta 1994, 298, 401–404. [Google Scholar] [CrossRef]
- Colon, M.; Iglesias, M.; Hidalgo, M.; Todolí, J.L. Sulfide and sulfate determination in water samples by means of hydrogen sulfide generation-inductively coupled plasma-atomic emission spectrometry. J. Anal. At. Spectrom. 2008, 23, 416–418. [Google Scholar] [CrossRef]
- Reisman, D.J.; Sundaram, V.; Al-Abed, S.R.; Allen, D. Statistical validation of sulfate quantification methods used for analysis of acid mine drainage. Talanta 2007, 71, 303–311. [Google Scholar] [CrossRef]
- Luo, J.; Yao, J.; Lu, Y. A Silver Nanoparticle-Modified Evanescent Field Optical Fiber Sensor for Methylene Blue Detection. Sensors 2013, 13, 3986–3997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Dai, Y.T.; Zhao, Q.C. A new type of high sensitivity optical fiber temperature sensor with microstructure. J. Optoelectron. Laser 2014, 25, 625–630. [Google Scholar]
- Wang, W.; Yu, Q.; Jiang, X. High sensitivity diaphragm-based extrinsic Fabry-Perot interferometric optical fiber underwater ultrasonic sensor. Optoelectron. Adv. Mater. Rapid Commun. 2012, 6, 697–702. [Google Scholar]
- Metje, N.; Chapman, D.N.; Rogers, C.D.F. An Optical Fiber Sensor System for Remote Displacement Monitoring of Structures—Prototype Tests in the Laboratory. Struct. Heal. Monit. 2008, 7, 51–63. [Google Scholar] [CrossRef]
- Fouqué, B.; Schaack, B.; Obeïd, P.; Combe, S.; Getin, S.; Barritault, P.; Chaton, P.; Chatelain, F. Multiple wavelength fluorescence enhancement on glass substrates for biochip and cell analyses. Biosens. Bioelectron. 2005, 20, 2335–2340. [Google Scholar] [CrossRef]
- Feng, X.; Duan, X.; Liu, L.; Feng, F.; Wang, S.; Li, Y.; Zhu, D. Fluorescence Logic-Signal-Based Multiplex Detection of Nucleases with the Assembly of a Cationic Conjugated Polymer and Branched DNA. Angew. Chem. 2009, 121, 5420–5425. [Google Scholar] [CrossRef]
- Saini, R.; Kumar, S. A fluorescent probe for the selective detection of sulfate ions in water. RSC Adv. 2013, 3, 21856. [Google Scholar] [CrossRef]
- Houk, K.N. The Frontier Molecular Orbital Theory of Cycloaddition Reactions. Acc. Chem. Res. 1975, 8, 361–369. [Google Scholar] [CrossRef]
- Tamayo, A.; Fernández-Lodeiro, J.; Escriche, L.; Casabó, J.; Covelo, B.; González, P.J. New fluorescence PET systems based on N2S2 pyridine-anthracene-containing macrocyclic ligands. spectrophotometric, spectrofluorimetric, and metal ion binding studies. Inorg. Chem. 2005, 44, 8105–8115. [Google Scholar] [CrossRef]
- De Silva, A.P.; Fox, D.B.; Moody, T.S.; Weir, S.M. The development of molecular fluorescent switches. Trends Biotechnol. 2001, 19, 29–34. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, H.K.; Li, G.L. Development of Fiber Optical Temperature Sensor Based on Fluorescence Lifetime; SPIE/COS Photonics Asia; Society of Photo-Optical Instrumentation Engineers (SPIE): Conference Series; SPIE: Beijing, China, 2016. [Google Scholar]
- Wade, S.A.; Forsyth, D.I.; Grattan, K.T.V. Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescence lifetime decay and fiber Bragg grating technique. Rev. Sci. Instrum. 2001, 72, 3186–3190. [Google Scholar] [CrossRef]
- Lin, H.; Huang, J.; Ding, L. A recyclable optical fiber sensor based on fluorescent carbon dots for the determination of ferric ion concentrations. J. Light. Technol. 2019, 37, 4815–4822. [Google Scholar] [CrossRef]
- Li, Z.; Ren, J.; Fane, A. Influence of solvent on the structure and performance of cellulose acetate membranes. J. Membr. Sci. 2006, 279, 601–607. [Google Scholar] [CrossRef]
- Witte, P.V.D.; Dijkstra, P.J.; Berg, J.W.A.V.D. Phase separation processes in polymer solutions in relation to membrane formation. J. Membr. Sci. 1996, 117, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Idris, A.; Yet, L. The effect of different molecular weight PEG additives on cellulose acetate asymmetric dialysis membrane performance. J. Membr. Sci. 2006, 280, 920–927. [Google Scholar] [CrossRef]
- Szmacinski, H.; Lakowicz, J.R. Optical measurements of pH using fluorescence lifetimes and phase-modulation fluorometry. Anal. Chem. 1993, 65, 1668–1674. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Topics in Fluorescence Spectroscopy: Probe Design and Chemical Sensing; Springer: Berlin/Heidelberg, Germany, 1994; Volume 4, pp. 295–334. [Google Scholar]
- Ristein, J.; Stief, R.T.; Ley, L. A comparative analysis of a-C:H by infrared spectroscopy and mass selected thermal effusion. J. Appl. Phys. 1998, 84, 3836–3847. [Google Scholar] [CrossRef]
- Torii, H.; Tasumi, M. Liquid Structure, Infrared and Isotropic/Anisotropic Raman Noncoincidence of the Amide I Band, and Low-Wavenumber Vibrational Spectra of Liquid Formamide: Molecular Dynamics and ab Initio Molecular Orbital Studies. Phys. Chem. B 1998, 102, 315–321. [Google Scholar] [CrossRef]
- Fei, L.; Ruishu, W.; Ping, L.; Paul, R.O. Development of the metal oxides based fiber optic sensors for elevated temperature pH sensing applications (Conference Presentation). In Proceedings of the Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XXI, SPIE, Virtual, Online, USA, 27 April–8 May 2020; Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11416/2558088/Metal-oxides-based-fiber-optic-pH-sensors-for-elevated-temperature/10.1117/12.2558088.short?SSO=1&tab=ArticleLin (accessed on 1 January 2021).
- Maccarthy, P. Simplified experimental route for obtaining Job’s curves. Anal. Chem. 2002, 50, 215. [Google Scholar] [CrossRef]
- Park, J.; Rao, B.A.; Son, Y.A. “Turn-on” fluorescent and colorimetric determination of Cu2+ ions in aqueous media based on a Rhodamine-N-phenyl Semicarbazide derivative. Fibers Polym. 2015, 16, 953–960. [Google Scholar] [CrossRef]
Cations | Δφ | Difference |
---|---|---|
Na+ | 0.1543 | |
Ca2+ | 0.1544 | +0.0001 |
Mg2+ | 0.1493 | −0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, L.; Gong, P.; Xu, B.; Ding, Q. An Optical Fiber Sensor Based on Fluorescence Lifetime for the Determination of Sulfate Ions. Sensors 2021, 21, 954. https://doi.org/10.3390/s21030954
Ding L, Gong P, Xu B, Ding Q. An Optical Fiber Sensor Based on Fluorescence Lifetime for the Determination of Sulfate Ions. Sensors. 2021; 21(3):954. https://doi.org/10.3390/s21030954
Chicago/Turabian StyleDing, Liyun, Panfeng Gong, Bing Xu, and Qingjun Ding. 2021. "An Optical Fiber Sensor Based on Fluorescence Lifetime for the Determination of Sulfate Ions" Sensors 21, no. 3: 954. https://doi.org/10.3390/s21030954
APA StyleDing, L., Gong, P., Xu, B., & Ding, Q. (2021). An Optical Fiber Sensor Based on Fluorescence Lifetime for the Determination of Sulfate Ions. Sensors, 21(3), 954. https://doi.org/10.3390/s21030954