Refractive Index Sensors Based on Long-Period Grating in a Negative Curvature Hollow-Core Fiber
Abstract
:1. Introduction
2. Results and Discussion
2.1. NCHCF and NCHCF-Based LPG—Models and Diameters
2.2. NCHCF—Optical Parameters and Sensitivity to the Refractive Index Changes
2.3. NCHCF-Based LPGs—Optical Parameters and Sensitivity of the Grating Wavelength Dip to the Refractive Index Changes
2.4. Analytical Comparison of the NCHCF and NCHCF-Based LPG Refractive Index Sensitivities
2.4.1. Case 1—SΔnNCHCF < 0, SΔnLPG > 0 and F < 2SΔnNCHCF
2.4.2. Case 2—SΔnNCHCF < 0, SΔnLPG < 0 and F > 0
3. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Dispersion Curves of the Liquid Sample Models and Water Attenuation Spectrum
References
- Jin, L.; Jin, W.; Ju, J.; Wang, Y. Investigation of Long-Period Grating Resonances in Hollow-Core Photonic Bandgap Fibers. J. Lightwave Technol. 2011, 29, 1707–1713. [Google Scholar]
- Erdogan, T. Fiber grating spectra. J. Lightwave Technol. 1997, 15, 1277–1294. [Google Scholar] [CrossRef] [Green Version]
- James, S.W.; Tatam, R.P. Optical fibre long-period grating sensors: Characteristics and application. Meas. Sci. Technol. 2003, 14, R49–R61. [Google Scholar] [CrossRef] [Green Version]
- Corres, J.M.; Matias, I.R.; Arregui, F.J. Optical Fibre Humidity Sensors Using Nano-films. In Sensors: Advancements in Modeling, Design Issues, Fabrication and Practical Applications; Huang, Y.-M.R., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 153–177. [Google Scholar] [CrossRef]
- Anemogiannis, E.; Glytsis, E.N.; Gaylord, T.K. Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations. J. Lightwave Technol. 2003, 21, 218–227. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Tam, H.-Y.; Krug, P.A.; Albert, J. Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling. Opt. Express 2009, 17, 5736–5742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eftimov, T.; Janik, M.; Koba, M.; Śmietana, M.; Mikulic, P.; Bock, W. Long-Period Gratings and Microcavity In-Line Mach Zehnder Interferometers as Highly Sensitive Optical Fiber Platforms for Bacteria Sensing. Sensors 2020, 20, 3772. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.-S.; Zhang, X.-L.; Shi, J.-G.; Xiang, D.; Zheng, L.; Yang, Y.; Yang, J.-H.; Feng, D.; Dong, W.-F. An Ultrasensitive Long-Period Fiber Grating-Based Refractive Index Sensor with Long Wavelengths. Sensors 2016, 16, 2205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korposh, S.; Lee, S.-W.; James, S.W.; Tatam, R.P. Refractive index sensitivity of fibre-optic long period gratings coated with SiO2nanoparticle mesoporous thin films. Meas. Sci. Technol. 2011, 22, 075208. [Google Scholar] [CrossRef]
- Śmietana, M.; Koba, M.; Mikulic, P.; Bock, W.J. Towards refractive index sensitivity of long-period gratings at level of tens of µm per refractive index unit: Fiber cladding etching and nano-coating deposition. Opt. Express 2016, 24, 11897–11904. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Bai, P.; Zhou, X.; Akimov, Y.; Png, C.E.; Ang, L.-K.; Knoll, W.; Wu, L. Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth. Adv. Opt. Mater. 2019, 7, 1801433. [Google Scholar] [CrossRef]
- Markos, C.; Travers, J.C.; Abdolvand, A.; Eggleton, B.J.; Bang, O. Hybrid photonic-crystal fiber. Rev. Mod. Phys. 2017, 89, 045003. [Google Scholar] [CrossRef] [Green Version]
- Debord, B.; Amrani, F.; Vincetti, L.; Gérôme, F.; Benabid, F. Hollow-Core Fiber Technology: The Rising of “Gas Photonics”. Fibers 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Jin, W.; Ju, J.; Xuan, H.; Ho, H.L.; Xiao, L.; Wang, D. Long period gratings in air-core photonic bandgap fibers. Opt. Express 2008, 16, 2784–2790. [Google Scholar] [CrossRef] [Green Version]
- Iadicicco, A.; Ranjan, R.; Campopiano, S. Fabrication and Characterization of Long-Period Gratings in Hollow Core Fibers by Electric Arc Discharge. IEEE Sens. J. 2015, 15, 3014–3020. [Google Scholar] [CrossRef]
- Iadicicco, A.; Campopiano, S.; Cusano, A. Long-Period Gratings in Hollow Core Fibers by Pressure-Assisted Arc Discharge Technique. IEEE Photonics Technol. Lett. 2011, 23, 1567–1569. [Google Scholar] [CrossRef]
- Iadicicco, A.; Campopiano, S. Sensing Features of Long Period Gratings in Hollow Core Fibers. Sensors 2015, 15, 8009–8019. [Google Scholar] [CrossRef] [Green Version]
- Rindorf, L.; Bang, O. Highly sensitive refractometer with a photonic-crystal-fiber long-period grating. Opt. Lett. 2008, 33, 563–565. [Google Scholar] [CrossRef]
- Hu, H.; Du, C.; Wang, Q.; Wang, X.; Zhao, Y. High sensitivity internal refractive index sensor based on a photonic crystal fiber long period grating. Instrum. Sci. Technol. 2017, 45, 181–189. [Google Scholar] [CrossRef]
- Sun, J.; Chan, C.C. Photonic bandgap fiber for refractive index measurement. Sens. Actuators B Chem. 2007, 128, 46–50. [Google Scholar] [CrossRef]
- Tsuda, H.; Urabe, K. Characterization of Long-period Grating Refractive Index Sensors and Their Applications. Sensors 2009, 9. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulos, G.; Benabid, F.; Birks, T.A.; Bird, D.M.; Knight, J.C.; Russell, P.S.J. Experimental demonstration of the frequency shift of bandgaps in photonic crystal fibers due to refractive index scaling. Opt. Express 2006, 14, 3000–3006. [Google Scholar] [CrossRef] [PubMed]
- Bufetov, I.; Kosolapov, A.; Pryamikov, A.; Gladyshev, A.; Kolyadin, A.; Krylov, A.; Yatsenko, Y.; Biriukov, A. Revolver Hollow Core Optical Fibers. Fibers 2018, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Cubillas, A.M.; Jiang, X.; Euser, T.G.; Taccardi, N.; Etzold, B.J.M.; Wasserscheid, P.; Russell, P.S.J. Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre. Analyst 2017, 142, 925–929. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.-L.; Ding, W.; Wang, Y.-Y.; Gao, S.-F.; Cao, L.; Feng, X.; Wang, P. Characterization of a liquid-filled nodeless anti-resonant fiber for biochemical sensing. Opt. Lett. 2017, 42, 863–866. [Google Scholar] [CrossRef]
- Wei, C.; Young, J.T.; Menyuk, C.R.; Hu, J. Temperature sensor based on liquid-filled negative curvature optical fibers. OSA Contin. 2019, 2, 2123–2130. [Google Scholar] [CrossRef]
- Belardi, W. Design and Properties of Hollow Antiresonant Fibers for the Visible and Near Infrared Spectral Range. J. Lightwave Technol. 2015, 33, 4497–4503. [Google Scholar] [CrossRef]
- Stawska, H.I.; Kolyadin, A.N.; Kosolapov, A.F.; Popenda, M.A. Hollow-Core Antiresonant Fibers—Exploring and Enhancing the Potential in Biochemical Detection Applications. In Proceedings of the 2020 22nd International Conference on Transparent Optical Networks (ICTON), Bari, Italy, 19–23 July 2020; pp. 1–4. [Google Scholar]
- Huang, X.; Yong, K.-T.; Yoo, S. A Method to Process Hollow-Core Anti-Resonant Fibers into Fiber Filters. Fibers 2018, 6, 89. [Google Scholar] [CrossRef] [Green Version]
- Rindorf, L.; Høiby, P.E.; Jensen, J.B.; Pedersen, L.H.; Bang, O.; Geschke, O. Towards biochips using microstructured optical fiber sensors. Anal. Bioanal. Chem. 2006, 385, 1370. [Google Scholar] [CrossRef]
- Shi, L.; Sordillo, L.A.; Rodríguez-Contreras, A.; Alfano, R. Transmission in near-infrared optical windows for deep brain imaging. J. Biophotonics 2016, 9, 38–43. [Google Scholar] [CrossRef]
- Zhang, X.U.; Faber, D.J.; Post, A.L.; van Leeuwen, T.G.; Sterenborg, H.J.C.M. Refractive index measurement using single fiber reflectance spectroscopy. J. Biophotonics 2019, 12, e201900019. [Google Scholar] [CrossRef]
- Rindorf, L.; Jensen, J.B.; Dufva, M.; Pedersen, L.H.; Høiby, P.E.; Bang, O. Photonic crystal fiber long-period gratings for biochemical sensing. Opt. Express 2006, 14, 8224–8231. [Google Scholar] [CrossRef] [Green Version]
- Laura, A.S.; Yang, P.; Sebastião, P.; Yury, B.; Robert, R.A. Deep optical imaging of tissue using the second and third near-infrared spectral windows. J. Biomed. Opt. 2014, 19. [Google Scholar] [CrossRef]
- Smith, A.M.; Mancini, M.C.; Nie, S. Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710–711. [Google Scholar] [CrossRef] [Green Version]
- Chorvatova, A.; Chorvat, D. Tissue fluorophores and their spectroscopic characteristics. In Fluorescence Lifetime Spectroscopy and Imaging: Principles and Applications in Biomedical Diagnostics; Marcu, L., French, P.M.W., Elson, D.S., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 47–85. [Google Scholar] [CrossRef]
- Marcatili, E.A.J.; Schmeltzer, R.A. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst. Tech. J. 1964, 43, 1783–1809. [Google Scholar] [CrossRef]
- Kolyadin, A.N.; Kosolapov, A.F.; Pryamikov, A.D.; Biriukov, A.S.; Plotnichenko, V.G.; Dianov, E.M. Light transmission in negative curvature hollow core fiber in extremely high material loss region. Opt. Express 2013, 21, 9514–9519. [Google Scholar] [CrossRef] [PubMed]
Case No. | SΔnNCHCF | SΔnLPG | F |
---|---|---|---|
Case 1 | SΔnNCHCF < 0 | SΔnLPG > 0 | F < 2SΔnNCHCF |
Case 2 | SΔnLPG < 0 | F > 0 |
Coefficient No. |
---|
r1 (µm) | r2 (µm) | t (µm) | λLPG (nm) | uνj |
---|---|---|---|---|
10 | 10.4 | 1 | 700.5 | (0 ≤ uνj < 2.501) or (122.146 < uνj ≤ 124.067) |
15 | 15.4 | 1 | 700.5 | (0 ≤ uνj < 2.469) or (180.871 < uνj ≤ 183.715) |
20 | 20.4 | 1 | 700.5 | (0 ≤ uνj ≤ 2.453) or (239.596 < uνj ≤ 243.362) |
10 | 11 | 1 | 700.5 | (0 ≤ uνj < 2.645) or (129.193 < uνj ≤ 131.225) |
10 | 12 | 1 | 700.5 | (0 ≤ uνj < 2.886) or (140.938 < uνj ≤ 143.154) |
10 | 10.4 | 0.9 | 700.5 | (0 ≤ uνj < 2.501) or (121.692 < uνj ≤ 124.067) |
10 | 10.4 | 0.8 | 634.0 | (0 ≤ uνj < 2.501) or (134.313 < uνj ≤ 137.080) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stawska, H.I.; Popenda, M.A. Refractive Index Sensors Based on Long-Period Grating in a Negative Curvature Hollow-Core Fiber. Sensors 2021, 21, 1803. https://doi.org/10.3390/s21051803
Stawska HI, Popenda MA. Refractive Index Sensors Based on Long-Period Grating in a Negative Curvature Hollow-Core Fiber. Sensors. 2021; 21(5):1803. https://doi.org/10.3390/s21051803
Chicago/Turabian StyleStawska, Hanna Izabela, and Maciej Andrzej Popenda. 2021. "Refractive Index Sensors Based on Long-Period Grating in a Negative Curvature Hollow-Core Fiber" Sensors 21, no. 5: 1803. https://doi.org/10.3390/s21051803
APA StyleStawska, H. I., & Popenda, M. A. (2021). Refractive Index Sensors Based on Long-Period Grating in a Negative Curvature Hollow-Core Fiber. Sensors, 21(5), 1803. https://doi.org/10.3390/s21051803