Spectral Characteristics of Square-Wave-Modulated Type II Long-Period Fiber Gratings Inscribed by a Femtosecond Laser
Abstract
:1. Introduction
2. Theory
3. Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vengsarkar, A.M.; Lemaire, P.J.; Judkins, J.B.; Bhatia, V.; Erdogan, T.; Sipe, J.E. Long-period fiber gratings as band-rejection filters. J. Light. Technol. 1996, 14, 58–65. [Google Scholar] [CrossRef]
- Wang, Y. Review of long period fiber gratings written by CO2 laser. J. Appl. Phys. 2010, 108, 081101. [Google Scholar] [CrossRef]
- Patrick, H.J.; Kersey, A.D.; Bucholtz, F. Analysis of the response of long period fiber gratings to external index of refraction. J. Lightwave Technol. 1998, 16, 1606–1612. [Google Scholar] [CrossRef]
- Shen, F.; Wang, C.; Sun, Z.; Zhou, K.; Zhang, L.; Shu, X. Small-period long-period fiber grating with improved refractive index sensitivity and dual-parameter sensing ability. Opt. Lett. 2017, 42, 199–202. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, V.; Vengsarkar, A.M. Optical fiber long-period grating sensors. Opt. Lett. 1996, 21, 692–694. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, V. Applications of long-period gratings to single and multi-parameter sensing. Opt. Express 1999, 4, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.-M.; Yu, Y.-S.; Zhang, X.-Y.; Guo, Q.; Sun, H.-B. Femtosecond Laser Inscribed Small-Period Long-Period Fiber Gratings With Dual-Parameter Sensing. IEEE Sens. J. 2017, 18, 1100–1103. [Google Scholar] [CrossRef]
- Shu, X.; Allsop, T.; Gwandu, B.; Zhang, L.; Bennion, I. Room-temperature operation of widely tunable loss filter. Electron. Lett. 2001, 37, 216–218. [Google Scholar] [CrossRef]
- Nodop, D.; Jauregui, C.; Jansen, F.; Limpert, J.; Tünnermann, A. Suppression of stimulated Raman scattering employing long period gratings in double-clad fiber amplifiers. Opt. Lett. 2010, 35, 2982–2984. [Google Scholar] [CrossRef]
- Heck, M.; Krämer, R.; Richter, D.; Goebel, T.; Nolte, S. Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings. In Fiber Lasers XV: Technology and Systems; International Society for Optics and Photonics: San Francisco, CA, USA, 2018; p. 105121I. [Google Scholar]
- Jiao, K.; Shen, H.; Guan, Z.; Yang, F.; Zhu, R. Suppressing stimulated Raman scattering in kW-level continuous-wave MOPA fiber laser based on long-period fiber gratings. Opt. Express 2020, 28, 6048–6063. [Google Scholar] [CrossRef]
- Heck, M.; Gauthier, J.; Tünnermann, A.; Vallée, R.; Nolte, S.; Bernier, M. Long period fiber gratings for the mitigation of parasitic laser effects in mid-infrared fiber amplifiers. Opt. Express 2019, 27, 21347–21357. [Google Scholar] [CrossRef] [PubMed]
- Savin, S.; Digonnet, M.J.F.; Kino, G.S.; Shaw, H.J. Tunable mechanically induced long-period fiber gratings. Opt. Lett. 2000, 25, 710–712. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.H.; Lee, K.S.; Kim, J.C.; Lee, B.H. Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure. Opt. Lett. 2004, 29, 331–333. [Google Scholar] [CrossRef]
- Sun, B.; Wei, W.; Liao, C.; Zhang, L.; Zhang, Z.; Chen, M.; Wang, Y. Automatic Arc Discharge-Induced Helical Long Period Fiber Gratings and Its Sensing Applications. IEEE Photonics Technol. Lett. 2017, 29, 873–876. [Google Scholar] [CrossRef] [Green Version]
- Petrovic, J.S.; Dobb, H.; Mezentsev, V.K.; Kalli, K.; Webb, D.J.; Bennion, I. Sensitivity of LPGs in PCFs Fabricated by an Electric Arc to Temperature, Strain, and External Refractive Index. J. Light. Technol. 2007, 25, 1306–1312. [Google Scholar] [CrossRef]
- Rios, T.C.A.; Acosta, D.; Rosa, K.; Gomez, L.; Hernandez, J.; Delgado, G. Characteristics of LPFGs Written by a CO2-Laser Glass Processing System. J. Lightwave Technol. 2019, 37, 1301–1309. [Google Scholar]
- Wolf, A.; Dostovalov, A.; Lobach, I.; Babin, S. Femtosecond Laser Inscription of Long-Period Fiber Gratings in a Polarization-Maintaining Fiber. J. Lightwave Technol. 2015, 33, 5178–5183. [Google Scholar] [CrossRef]
- Dong, X.; Xie, Z.; Song, Y.; Yin, K.; Chu, D.; Duan, J. High temperature-sensitivity sensor based on long period fiber grat-ing inscribed with femtosecond laser transversal-scanning method. Chin. Opt. Lett. 2017, 15, 090602. [Google Scholar] [CrossRef]
- Schulze, C.; Brüning, R.; Schröter, S.; Duparré, M. Mode Coupling in Few-Mode Fibers Induced by Mechanical Stress. J. Lightwave Technol. 2015, 33, 4488–4496. [Google Scholar] [CrossRef]
- Bock, W.; Chen, J.; Mikulic, P.; Eftimov, T. A Novel Fiber-Optic Tapered Long-Period Grating Sensor for Pressure Monitoring. IEEE Trans. Instrum. Meas. 2007, 56, 1176–1180. [Google Scholar] [CrossRef]
- Zeng, H.; Geng, T.; Yang, W.; An, M.; Li, J.; Yang, F.; Yuan, L. Combining Two Types of Gratings for Simultaneous Strain and Temperature Measurement. IEEE Photonics Technol. Lett. 2016, 28, 477–480. [Google Scholar] [CrossRef]
- Zhang, Y.-S.; Zhang, Y.; Zhang, W.; Yu, L.; Kong, L.; Yan, T.; Chen, L. Temperature self-compensation strain sensor based on cascaded concave-lens-like long-period fiber gratings. Appl. Opt. 2020, 59, 2352–2358. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Zhang, Y.; Yu, L.; Kong, L.; Yan, T.; Chen, L. Parabolic-cylinder-like long-period fiber grating sensor based on refractive index modulation enhancement effect. Appl. Opt. 2019, 58, 1772–1777. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Wang, C.; Benabid, F.; Chiang, K.S.; Xiao, L. Robust Mode Matching between Structurally Dissimilar Optical Fiber Waveguides. ACS Photonics 2021, 8, 857–863. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, C.; Xiao, L. Ultrathin Lensed Photonic Crystal Fibers with Wide Bandwidth and Long Working Distances. J.Lightwave Technol. 2021, 39, 2482–2488. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, C.; Yu, R.; Hu, Z.; Xiao, L. Graphitic Carbon Nitride for Enhancing Humidity Sensing of Microfibers. J. Light. Technol. 2020, 1. [Google Scholar] [CrossRef]
- Trono, C.; Valeri, F.; Baldini, F. Discretized superimposed optical fiber long-period gratings. Opt. Lett. 2020, 45, 807–810. [Google Scholar] [CrossRef]
- Dostovalov, A.V.; Wolf, A.A.; Babin, S. Long-period fibre grating writing with a slit-apertured femtosecond laser beam (λ = 1026 nm). Quantum Electron. 2015, 45, 235–239. [Google Scholar] [CrossRef]
- Allsop, T.; Kalli, K.; Zhou, K.; Lai, Y.; Smith, G.; Dubov, M.; Webb, D.; Bennion, I. Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors. Opt. Commun. 2008, 281, 5092–5096. [Google Scholar] [CrossRef]
- Allsop, T.; Kalli, K.; Zhou, K.; Smith, G.; Komodromos, M.; Petrovic, J.; Webb, D.J.; Bennion, I. Spectral characteristics and thermal evolution of long-period gratings in photonic crystal fibers fabricated with a near-IR radiation femtosecond laser us-ing point-by-point inscription. J. Opt. Soc. Am. B 2011, 28, 2105–2114. [Google Scholar] [CrossRef]
- Heck, M.; Schwartz, G.; Krämer, R.; Richter, D.; Goebel, T.; Matzdorf, C.; Tünnermann, A.; Nolte, S. Control of higher-order cladding mode excitation with tailored femtosecond-written long period fiber gratings. Opt. Express 2019, 27, 4292–4303. [Google Scholar] [CrossRef] [PubMed]
- Heck, M.; Krämer, R.G.; Ullsperger, T.; Goebel, T.A.; Richter, D.; Tünnermann, A.; Nolte, S. Efficient long period fiber gratings inscribed with femtosecond pulses and an amplitude mask. Opt. Lett. 2019, 44, 3980–3983. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yang, Y.; Wang, C.; Liao, C.; Wang, Y. Femtosecond-laser-inscribed sampled fiber Bragg grating with ultrahigh thermal stability. Opt. Express 2016, 24, 3981–3988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Li, H.; Rao, B.; Wang, M.; Wu, B.; Wang, Z. Spectral Characteristics of Square-Wave-Modulated Type II Long-Period Fiber Gratings Inscribed by a Femtosecond Laser. Sensors 2021, 21, 3278. https://doi.org/10.3390/s21093278
Zhao X, Li H, Rao B, Wang M, Wu B, Wang Z. Spectral Characteristics of Square-Wave-Modulated Type II Long-Period Fiber Gratings Inscribed by a Femtosecond Laser. Sensors. 2021; 21(9):3278. https://doi.org/10.3390/s21093278
Chicago/Turabian StyleZhao, Xiaofan, Hongye Li, Binyu Rao, Meng Wang, Baiyi Wu, and Zefeng Wang. 2021. "Spectral Characteristics of Square-Wave-Modulated Type II Long-Period Fiber Gratings Inscribed by a Femtosecond Laser" Sensors 21, no. 9: 3278. https://doi.org/10.3390/s21093278
APA StyleZhao, X., Li, H., Rao, B., Wang, M., Wu, B., & Wang, Z. (2021). Spectral Characteristics of Square-Wave-Modulated Type II Long-Period Fiber Gratings Inscribed by a Femtosecond Laser. Sensors, 21(9), 3278. https://doi.org/10.3390/s21093278