A Wearable Low-Power Sensing Platform for Environmental and Health Monitoring: The Convergence Project
Abstract
:1. Introduction
2. Low-Power Wearable Sensing Platform: Architecture, Specifications and Design
- Analog and digital sensors
- Data acquisition and visualization in real-time with specific a App developed by CEA-LETI (Grenoble, France)
- Radio Frequency (RF) Microcontroller Unit (MCU)
- Bluetooth Low Energy (BLE) 2.4 GHz communication (data collection on mobile phone)
- Antenna circuit designed by our G-INP partner (Grenoble, France).
2.1. Electronic Architecture
2.2. Antenna
2.2.1. Antenna Specifications
2.2.2. Antenna Simulated Results
- The antenna in air (A1)
- The antenna with protected varnish and resin in air (A2)
- The antenna with protected layers above human’s wrist (A3)
- The antenna with protected layers folded around human’s wrist (A4)
2.3. Printed Circuit Board and Antenna Design
2.4. Consumption Test
2.5. Application Development
2.6. Integration
3. Sensors Characteristics
- -
- A bio-sensor, an ISFET sweat/pH sensor developed by EPFL [14]. The working principle similar to a MOSFET.
- -
- Gas sensors: a miniaturized gas sensor combining NO2, CO and NH3 gases on the same dye; with NO2 sensor developed by ENEA, NH3 sensor by UCL and CO sensor by IMT [7].
- -
- Humidity and Temperature sensors from STMicroelectronics, which are very low power with approximately 2 µA consumption @ 1 Hz output data rate. It is connected to µC via I2C bus and may be powered from 1.7 V to 3.6 V.
- -
- Activity sensor developed by EDI [4].
3.1. NO2 Sensor: Synthesis of the Sensing Materials
3.2. NO2 Sensor: Materials Characterizations
3.3. NO2 Sensor: Device Fabrication and Gas Sensing Protocol
3.4. CO Sensor: Preparation of Inkjet Material and Deposition
4. Tests and Results
4.1. NO2 Sensor: Results and Discussion
4.2. CO Sensor: RESULTS and Discussion
4.3. NO2 Sensor Tests with Low-Power Sensing Platform
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ernst, T.; Guillemaud, R.; Mailley, P.; Polizzi, J.P.; Koenig, A.; Boisseau, S.; Pauliac-Vaujour, E.; Plantier, C.; Delapierr, G.; Saoutieff, E.; et al. Sensors and related devices for IoT, medicine and smart-living. In Proceedings of the 2018 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 18–22 June 2018. [Google Scholar]
- Zampogna, A.; Manoni, A.; Asci, F.; Liguori, C.; Irrera, F.; Suppa, A. Shedding Light on Nocturnal Movements in Parkinson’s Disease: Evidence from Wearable Technologies. Sensors 2020, 20, 5171. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Health Aspects of Air Pollution with Particulate Matter, Ozone and Nitrogen Dioxide: Report on a WHO Working Group, Bonn, Germany 13–15 January 2003; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Ancans, A.; Greitans, M.; Cacurs, R.; Rozentals, A.; Banga, B. Wearable sensor clothing for body movement measurement during physical activities in healthcare. Sens. Wearable Wirel. Body Sens. Netw. Healthc. Appl. 2021. submitted. [Google Scholar]
- Pennazza, G.; Santonico, M.; Vollero, L.; Zompanti, A.; Sabatini, A.; Kumar, N.; D’Amico, A. Advances in the electronics for cyclic voltammetry: The case of gas detection by using microfabricated electrodes. Front. Chem. 2018, 6, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallejo-Perez, M.; Ternon, C.; Spinelli, N.; Morisot, F.; Theodorou, C.; Jayakumar, G.; Hellström, P.-E.; Mouis, M.; Rapenne, L.; Mescot, X.; et al. Optimization of GOPS-Based Functionalization Process and Impact of Aptamer Grafting on The Si Nanonet FET Electrical Properties as First Steps towards Thrombin Electrical Detection. Nanomaterials 2020, 10, 1842. [Google Scholar] [CrossRef] [PubMed]
- Savin, M.; Mihailescu, C.-M.; Avramescu, V.; Dinulescu, S.; Firtat, B.; Craciun, G.; Brasoveanu, C.; Pachiu, C.; Catrinel, A.; Moldovan, I.C. A new hybride sensitive PANI/SWCNT/Feroccene based layer for a wearable CO sensor. Sens. Wearable Wirel. Body Sens. Netw. Healthc. Appl. 2021. submitted. [Google Scholar]
- De Vito, S.; Esposito, E.; D’Ella, G.; Del Giudice, A.; Fattoruso, G.; Ferlito, S.; D’Aurita, P.; Intini, F.; Di Francia, G.; Terini, E. High Resolution Air Quality Monitoring with IoT Intelligent Multisensor devices during COVID-19 Pandemic Phase 2 in Italy. In Proceedings of the AEIT International Annual Conference (AEIT), Catania, Italy, 2 November 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Mele, L.J.; Palestri, P.; Selmi, L. General Approach to Model the Surface Charge Induced by Multiple Surface Chemical Reactions in Potentiometric FET Sensors. IEEE Trans. Electron Devices 2020, 67, 1149–1156. [Google Scholar] [CrossRef]
- Polichetti, T.; Miglietta, M.L.; Alfano, B.; Massera, E.; De Vito, S.; Di Francia, G.; Faucon, A.; Saoutieff, E.; Boisseau, S.; Walewyns, T.; et al. A Networked Wearable Device for Chemical Multisensing. Lect. Notes Electr. Eng. 2019, 539, 17–24. [Google Scholar]
- Ancans, A.; Ormanis, J.; Cacurs, R.; Greitans, M.; Saoutieff, E.; Faucon, A. Bluetooth Low Energy throughput in densely deployed radio environment. In Proceedings of the 2019 23rd International Conference Electronics, Palanga, Lithuania, 17–19 June 2019. [Google Scholar]
- Saoutieff, E.; Faucon, A.; Boisseau, S.; Ernst, T. Sensor and Energy Harvesting flexible platform. In Proceedings of the ESSDERC/ESSCIRC conference, NEREID-SINANO-Workshop Nanoelectronics and Smart System Technologies for Future applications, Dresden, Germany, 3 September 2018. [Google Scholar]
- Saoutieff, E.; Faucon, A.; Boisseau, S.; Polichetti, T.; Miglietta, M.L.; Alfano, B.; Massera, E.; De Vito, S.; Petre, S.; Walewyns, T.; et al. Sensors platform for health and environmental monitoring. Semi-conducting Nanomaterials for Health, Environment and Security Applications. In Proceedings of the Workshop Nano2sence, Grenoble, France, 6 November 2018. [Google Scholar]
- Bellando, F.; Mele, L.J.; Palestri, P.; Zhang, J.; Ionescu, A.M.; Selmi, L. Sensitivity, Noise and Resolution in a BEOL-modified foundry-made ISFET with miniaturized Reference Electrode for wearable POC applications. Sens. Wearable Wirel. Body Sens. Netw. Healthc. Appl. 2021. submitted. [Google Scholar]
- Ricciardella, F.; Massera, E.; Polichetti, T.; Miglietta, M.L.; Di Francia, G. A calibrated graphene-based chemi-sensor for sub parts-per-million NO2 detection operating at room temperature. Appl. Phys. Lett. 2014, 104, 183502. [Google Scholar] [CrossRef]
- Alfano, B.; Miglietta, M.L.; Polichetti, T.; Massera, E.; Bruno, A.; Di Francia, G.; Veneri, P.D. Improvement of NO2 detection: Graphene decorated with ZnO nanoparticles. IEEE Sens. J. 2019, 19, 8751–8757. [Google Scholar] [CrossRef]
- Bui, D.-H.-N.; Vuong, T.P.; Depres, G.; Verdier, J.; Allard, B.; Benech, P. Coplanar Multiband Antenna on Flexible Substrate. In Proceedings of the Energy Harvesting System for IoT Applications Eucap, London, UK, 9–13 April 2018. [Google Scholar]
- Bui, D.-H.-N.; Vuong, T.P.; Verdier, J.; Allard, B.; Benech, P. Design and Measurement of 3D Flexible Antenna Diversity for Ambient RF Energy Scavenging in Indoor Scenarios. IEEE Access 2019. [Google Scholar] [CrossRef]
- Fedi, F.; Miglietta, M.L.; Polichetti, T.; Ricciardella, F.; Massera, E.; Ninno, D.; Di Francia, G. A study on the physicochemical properties of hydroalcoholic solutions to improve the direct exfoliation of natural graphite down to few-layers graphene. Mater. Res. Express 2015, 2, 035601. [Google Scholar] [CrossRef]
- Chiolerio, A.; Bocchini, S.; Porro, S. Inkjet printed negative supercapacitors: Synthesis of polyaniline-based inks, doping agent effect, and advanced electronic devices applications. Adv. Funct. Mater. 2014, 24, 3375–3383. [Google Scholar] [CrossRef] [Green Version]
Sensors | Sampling Rate (Hz) |
---|---|
Embedded activity sensor | 10 |
Embedded Temperature & humidity sensor | 1 |
Gas | 10 |
Activity platform (EDI) | 2 |
ISFET sweat/pH biosensor | 1 |
Temperature | 2 |
Conditions | Communication Distance | Transmission Power | Receiver’s Sensitivity | Desired Antenna Gain |
---|---|---|---|---|
Worst scenario | 10 m | −20 dBm | −90 dBm | −9.77 dB |
Best scenario | 10 m | 4 dBm | −90 dBm | −33.77 dB |
Tissue | Radius (mm) | Permittivity | Loss Tangent |
---|---|---|---|
Skin | 2 | 38.06 | 0.28 |
Fat | 5 | 5.29 | 0.15 |
Muscle | 12 | 52.79 | 0.224 |
Bone | 10 | 18.49 | 0.25 |
Conditions | Transmission Power | Receiver’s Sensitivity | Antenna Gain | Maximum Distance |
---|---|---|---|---|
In air | −20 dBm | −90 dBm | 2.65 dBi | 41.5 m |
On wrist | −20 dBm | −90 dBm | −2.44 dBi | 23.0 m |
On wrist (folded) | −20 dBm | −90 dBm | −5.73 dBi | 15.8 m |
Antenna (with Protected Resin) at 2.45 GHz | Reflection Coefficient (dB) | Realized Gain (dB) | Total Efficiency (%) |
---|---|---|---|
Antenna in air (A2) | −6.5 | 2.65 | 68.6% |
Antenna on wrist (A3) | −18.5 | −2.44 | 13.9% |
Bended antenna on wrist (A4) | −16.5 | −5.73 | 12.1% |
Material | Thickness | Characteristics | |
---|---|---|---|
Substrate | Kapton | 0.05 mm | Relative Permittivity: 3.3 Tan (δ): 0.004 @ 2.45 GHz |
Conductor | Copper | 0.0035 mm | Conductivity: 5.8 × 107 S/m |
Protect | Varnish | 0.0025 mm | Relative Permittivity: 4.3 Tan(δ): 0.03 |
Resin | Flexible Silicon | 3 mm below circuit 5 mm above circuit | Relative Permittivity: 2.8 Tan(δ): 0.0015 @ 1 MHz |
Parameter | Value (mm) | Parameter | Value (mm) | Parameter | Value (mm) |
---|---|---|---|---|---|
Wpatch | 24 | lf | 3 | wground | 24 |
Lpatch | 18 | lf2 | 3 | lground | 4.5 |
wl | 0.15 | yl | 8 |
Scenario | Consumption | |
---|---|---|
Static mode (A) | nRF52 configuration: OFF Mode BLE communication disabled All peripherals/GPIOs disabled | 760 µWh Pavg = 0.76 mW Pmax= 0.76 mW |
Dynamic mode (B,C) | nRF52 configuration: LP mode BLE communication enabled Sending connection request (advertising packets every 1 s) Sleep mode for internal sensors | 3.9 mWh Pmax = 52 mW |
Dynamic mode (D) | nRF52 configuration: LP mode BLE communication enabled Mode connected + notifications enabled Waiting sensor notification (L2CAP packets every 100 msec) Sleep mode for internal sensors | 4.1 mWh Pmax = 29 mW |
Dynamic mode (G) | nRF52 configuration: LP mode Mode connected + notifications enabled Inertial Measurement Unit (IMU): acquisition measures (accelerometer, gyrometer & quaternion) + sending data (20 bytes) at 10 Hz T&RH sensor: sleep mode Analog-to-Digital Converter: sleep mode | 42.8 mWh Pavg = 43 mW Pmax = 78 mW |
Dynamic mode (F) | nRF52 configuration: LP mode Mode connected + notifications enabled Accelerometer: sleep mode T&RH sensor: acquisition + sending data (4 bytes) at 1 Hz Analog-to-Digital Converter: sleep mode | 4.2 mWh Pavg = 4.2 mW Pmax = 29 mW |
Dynamic mode (E) | nRF52 configuration: LP mode Mode connected + notifications enabled Accelerometer: sleep mode T&RH sensor: sleep mode Analog-to-Digital Converter: acquisition + sending data (16 bytes) at 10 Hz | 6.7 mWh Pavg = 6.7 mW Pmax = 45 mW |
Name of Ink-Jet Formulation | Conductivity (mS·cm−1) | pH | Viscosity (CP) |
---|---|---|---|
PANI: PSS (EG/Tween 80%) | 2 | 4.0 | 8 |
PANI:PSS/SWCNT (PSS:Lacticacid:EG; Tween 80%) | 4.98 | 6.0 | 12 |
Sample Name | R (kΩ) | Sensitivity to NO2 | |
---|---|---|---|
Pristine graphene | ENEA 1 | 0.46 | 37% @ 300 ppb |
Pristine graphene | ENEA 2 | 0.4 | 31% @ 1 ppm |
Pristine graphene | ENEA 3 | 1.9 | 23% @ 1 ppm |
ZnO NP decorated graphene | ENEA 4 | 88 | 50% @ 1 ppm |
Multimeter Measures [Ω] | Platform Measures [Ω] | Error [%] | Value Converted by the ADC [V] | |
---|---|---|---|---|
ENEA2 | 593 | 598 | 0.8% | 145 |
ENEA3 | 1984 | 2009 | 1.26% | 477 |
Multimeter Measurements [kΩ] | Base Resistance Not Connected to Platform [kΩ] | Base Resistance Connected to Platform [kΩ] | Conductance Variation Not Connected | Conductance Variation Connected | |
---|---|---|---|---|---|
Pristine graphene | 90 | 99 | 91 | 25% | 31% |
G-ZnO | 82 | 79 | 90 | 58% | 63% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saoutieff, E.; Polichetti, T.; Jouanet, L.; Faucon, A.; Vidal, A.; Pereira, A.; Boisseau, S.; Ernst, T.; Miglietta, M.L.; Alfano, B.; et al. A Wearable Low-Power Sensing Platform for Environmental and Health Monitoring: The Convergence Project. Sensors 2021, 21, 1802. https://doi.org/10.3390/s21051802
Saoutieff E, Polichetti T, Jouanet L, Faucon A, Vidal A, Pereira A, Boisseau S, Ernst T, Miglietta ML, Alfano B, et al. A Wearable Low-Power Sensing Platform for Environmental and Health Monitoring: The Convergence Project. Sensors. 2021; 21(5):1802. https://doi.org/10.3390/s21051802
Chicago/Turabian StyleSaoutieff, Elise, Tiziana Polichetti, Laurent Jouanet, Adrien Faucon, Audrey Vidal, Alexandre Pereira, Sébastien Boisseau, Thomas Ernst, Maria Lucia Miglietta, Brigida Alfano, and et al. 2021. "A Wearable Low-Power Sensing Platform for Environmental and Health Monitoring: The Convergence Project" Sensors 21, no. 5: 1802. https://doi.org/10.3390/s21051802
APA StyleSaoutieff, E., Polichetti, T., Jouanet, L., Faucon, A., Vidal, A., Pereira, A., Boisseau, S., Ernst, T., Miglietta, M. L., Alfano, B., Massera, E., De Vito, S., Bui, D. H. N., Benech, P., Vuong, T. -P., Moldovan, C., Danlee, Y., Walewyns, T., Petre, S., ... Ionescu, A. M. (2021). A Wearable Low-Power Sensing Platform for Environmental and Health Monitoring: The Convergence Project. Sensors, 21(5), 1802. https://doi.org/10.3390/s21051802