A New Hybrid Sensitive PANI/SWCNT/Ferrocene-Based Layer for a Wearable CO Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Solutions Preparation
- Solution S1: 0.3 M aniline monomer was dissolved in 0.5 M H2SO4 in 24 mL of deionized water.
- Solution S2: PANI:PSS/SWCNT was prepared as follows: 3.2% PSS was dissolved in 24 mL of deionized water and ultrasonicated. Over the PSS dissolved solution, 0.01% SWCNT and 0.5 M/L H2SO4 were added and the ultrasonication was continued for 2 h after which it was magnetically stirred by heating at 50 °C for another 2 h. After the SWCNT was dissolved in the solution, an extra 0.3 M/L of monomer aniline was added.
- Solution S3: The Fc solution preparation was performed as follows: 4 mM/L Fc was added to 3 mL of absolute ethanol, 600 µL of HNO3, and 1.5 M of H2SO4.
- Solution S4: PANI:PSS/SWCNTs/Fc. The S4 solution used in the electrosynthesis has resulted from the mixing of S2 and S3 solutions in a ratio of 3:1 (v/v).
2.2.2. Electrochemical Experiments
- EP conditions to obtain PANI layers: The sensors were immersed in the electrolyte solution, S1 solution (ANI in H2SO4), and the CV was performed by linear scanning at −200 and 900 mV with a scanning speed of 50 mV/s for 40 cycles.
- EP conditions for PANI:PSS/SWCNTs layers: The sensors were immersed in a composite solution, S2 solution (PANI:PSS/SWCNTs), and the CV was performed by linear scanning at −200 and 900 mV with a scanning speed of 50 mV/s for 40 cycles.
- EP conditions for PANI:PSS/SWCNT/Fc layers: The sensors were immersed in a S4 solution, PANI:PSS:SWCNT:Fc, and the CV was performed by linear scanning at −200 and 900 mV with a scanning speed of 50 mV/s for 40 cycles.
2.2.3. Raman Spectroscopy
2.2.4. X-ray Photoemission Spectroscopy (XPS)
2.2.5. X-ray Diffraction (XRD)
2.2.6. SEM Spectroscopy
2.2.7. Sensor Fabrication
2.2.8. Gas Sensing Measurements
2.2.9. Wearable Electronic Readout Module
3. Results and Discussion
3.1. Process and Material Analysis
3.1.1. Visual Characterization of the S2 Solution
3.1.2. Optimization of EP Process on IDEs
3.1.3. Morphological and Structural Characterizations
- SEM characterization
3.1.4. Raman Characterization
3.1.5. XPS and XRD Characterizations
3.2. Electrochemical Characterizations
3.2.1. PANI Films Formation
3.2.2. PANI:PSS/SWCNT Films Formation
3.2.3. PANI:PSS/SWCNT/Fc Films Formation
3.2.4. EIS Results
3.3. Wearable and Additional Applications
3.3.1. CO dc Measurements
- Humidity studies
3.3.2. Analytical Parameters of the Sensor
3.3.3. Wearable Potential Development
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, S.G.; Jun, J.; Lee, J.S.; Jang, J. A highly sensitive wireless nitrogen dioxide gas sensor based on an organic conductive nanocomposite paste. J. Mater. Chem. A 2019, 7, 8451–8459. [Google Scholar] [CrossRef]
- Zampetti, E.; Pantalei, S.; Muzyczuk, A.; Bearzotti, A.; De Cesare, F.; Spinella, C.; Macagnano, A. A high sensitive NO2 gas sensor based on PEDOT–PSS/TiO2 nanofibres. Sens. Actuators B Chem. 2013, 176, 390–398. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, S.H.; Yang, H.; Park, C.S.; Lee, C.S.; Kwon, O.S.; Jang, J. Human dopamine receptor-conjugated mul-tidimensional conductive polymer nanofiber membrane for dopamine detection. ACS Appl. Mater. Inter. 2016, 8, 28897–28903. [Google Scholar] [CrossRef]
- Oh, J.; Kim, Y.K.; Lee, J.S.; Jang, J. Highly porous structured polyaniline nanocomposites for scalable and flexible high-performance supercapacitors. Nanoscale 2019, 11, 6462–6470. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.-S.; Parvez, K.; Li, S.; Yang, S.; Liu, Z.; Liu, S.; Feng, X.; Müllen, K. Alternating Stacked graphene-conducting polymer compact films with ultrahigh areal and volumetric capacitances for high-energy micro-supercapacitors. Adv. Mater. 2015, 27, 4054–4061. [Google Scholar] [CrossRef]
- Lee, K.; Cho, K.H.; Ryu, J.; Yun, J.; Yu, H.; Lee, J.; Jang, J. Low-cost and efficient perovskite solar cells using a surfac-tant-modified polyaniline: Poly (styrenesulfonate) hole transport material. Electrochi. Acta. 2017, 224, 600–607. [Google Scholar] [CrossRef]
- Huang, H.; Yao, J.; Chen, H.; Zeng, X.; Chen, C.; She, X.; Li, L. Facile preparation of halloysite/polyaniline nanocomposites via in situ polymerization and layer-by-layer assembly with good supercapacitor performance. J. Mater. Sci. 2016, 51, 4047–4054. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, J.; Lan, Z.; Zheng, M.; Yue, G.; Lin, J.; Huang, M. Preparation of PAA-g-PEG/PANI polymer gel electrolyte and its application in quasi solid state dye-sensitized solar cells. Polym. Eng. Sci. 2014, 55, 322–326. [Google Scholar] [CrossRef]
- Gao, J.; Yang, Y.; Zhang, Z.; Yan, J.; Lin, Z.; Guo, X. Bifacial quasi-solid-state dye-sensitized solar cells with Poly (vinyl pyrrolidone)/polyaniline transparent counter electrode. Nano Energy 2016, 26, 123–130. [Google Scholar] [CrossRef]
- Lee, K.; Yu, H.; Lee, J.W.; Oh, J.; Bae, S.; Kim, S.K.; Jang, J. Efficient and moisture-resistant hole transport layer for inverted perovskite solar cells using solution-processed polyaniline. J. Mater. Chem. C 2018, 6, 6250–6256. [Google Scholar] [CrossRef]
- Lee, H.J.; Anoop, G.; Lee, H.J.; Kim, C.; Park, J.W.; Choi, J.; Kim, Y.M. Enhanced thermoelectric performance of PEDOT: PSS/PANI–CSA polymer multilayer structures. Energy Environ. Sci. 2016, 9, 2806–2811. [Google Scholar] [CrossRef]
- Han, H.; Lee, J.S.; Cho, S. Comparative studies on two-electrode symmetric supercapacitors based on polypyrrole:Poly(4-styrenesulfonate) with different molecular weights of poly(4-styrenesulfonate). Polymers 2019, 11, 232. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Kim, M.; Jang, J. Screen-printable and flexible RuO2Nanoparticle-decorated PEDOT:PSS/Graphene nanocomposite with enhanced electrical and electrochemical performances for high-capacity supercapacitor. ACS Appl. Mater. Interfaces 2015, 7, 10213–10227. [Google Scholar] [CrossRef]
- Cho, S.; Lee, J.S.; Jun, J.; Kim, S.G.; Jang, J. Fabrication of water-dispersible and highly conductive PSS-doped PANI/graphene nanocomposites using a high-molecular weight PSS dopant and their application in H2S detection. Nanoscale 2014, 6, 15181–15195. [Google Scholar] [CrossRef] [PubMed]
- Rosa, T.; Aroeira, G.J.; Parreira, L.S.; Codognoto, L.; Santos, M.C.; Simões, F.R. Self-assembled films based on polyani-line/multiwalled carbon nanotubes composites and sulphonated polystyrene deposited onto ITO substrates. Synthetic Met. 2015, 210, 186–191. [Google Scholar] [CrossRef]
- Sarvi, A.; Sundararaj, U. Electrical permittivity and electrical conductivity of multiwall carbon nanotube-polyaniline (MWCNT-PANi) core-shell nanofibers and MWCNT-PANi/polystyrene composites. Macromol. Mater. Eng. 2014, 299, 1013–1020. [Google Scholar] [CrossRef]
- El Khakani, M.A.; Yi, J.H. The nanostructure and electrical properties of SWNT bundle networks grown by an all-laser growth process for nanoelectronic device applications. Nanotechnology 2004, 15, S534–S539. [Google Scholar] [CrossRef]
- Bernholc, J.; Brenner, D.W.; Nardelli, M.B.; Meunier, V.; Roland, C. Mechanical and electrical properties of nanotubes. Annu. Rev. Mater. Res. 2002, 32, 347–375. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Wei, T.; Luo, G.; Wei, F. Fabrication and characterization of multi-walled carbon nanotubes-based ink. J. Mater. Sci. 2005, 40, 5075–5077. [Google Scholar] [CrossRef]
- Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 2010, 35, 357–401. [Google Scholar] [CrossRef]
- Kharisov, B.I.; Kharissova, O.V.; Méndez, U.O. Methods for dispersion of carbon nanotubes in water and common sol-vents. MRS Online Proc. Libr. Arch. 2014, 1700, 109–114. [Google Scholar] [CrossRef]
- Kulkarni, M.V.; Apte, S.K.; Naik, S.D.; Ambekar, J.D.; Kale, B.B. Ink-jet printed conducting polyaniline based flexible humidity sensor. Sens. Actuators B Chem. 2013, 178, 140–143. [Google Scholar] [CrossRef]
- Zeng, F.-W.; Liu, X.-X.; Diamond, D.; Lau, K.T. Humidity sensors based on polyaniline nanofibres. Sens. Actuators B Chem. 2010, 143, 530–534. [Google Scholar] [CrossRef]
- Farahani, H.; Wagiran, R.; Hamidon, M.N. Humidity sensors principle, mechanism, and fabrication technologies: A com-prehensive review. Sensors 2014, 14, 7881–7939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M.V. Chemiresistive polyaniline-based gas sensors: A mini review. Sens. Actuators B Chem. 2015, 220, 534–548. [Google Scholar] [CrossRef]
- Sengupta, P.P.; Barik, S.; Adhikari, B. Polyaniline as a Gas-Sensor Material. Mater. Manuf. Process. 2006, 21, 263–270. [Google Scholar] [CrossRef]
- Zhang, T.; Mubeen, S.; Yoo, B.; Myung, N.V.; Deshusses, M.A. A gas nanosensor unaffected by humidity. Nanotechnology 2009, 20, 255501. [Google Scholar] [CrossRef]
- Shimizu, Y.; Yamamoto, S.; Takase, S. A thick-film impedancemetric carbon monoxide sensor using layered perovskite-type cuprate. Sens. Actuators B Chem. 2017, 249, 667–672. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Paul, S. Conductive polypyrrole modified with ferrocene for applications in carbon monoxide sen-sors. Sens. Actuators B Chem. 2007, 25, 60–65. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y.; Ma, Y.; Li, Y.; Du, F.; Chen, Y. Noncovalent nanohybrid of ferrocene with single-walled carbon nanotubes and its enhanced electrochemical property. Chem. Phys. Lett. 2006, 420, 416–420. [Google Scholar] [CrossRef]
- Guldi, D.M.; Marcaccio, M.; Paolucci, D.; Paolucci, F.; Tagmatarchis, N.; Tasis, D.; Prato, M. Single-wall carbon nano-tube–ferrocene nanohybrids: Observing intramolecular electron transfer in functionalized SWNTs. Angew. Chem. Int. Edit. 2003, 42, 4206–4209. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; D’Ambra, C.A.; Katsumata, R.; Burns, R.L.; Somervell, M.H.; Segalman, R.A.; Bates, C.M. Rapid and se-lective deposition of patterned thin films on heterogeneous substrates via spin coating. ACS Appl. Mater. Inter. 2019, 11, 21177–21183. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, J.; Xiong, S.; Zhao, Y. Performance of polymer solar cells fabricated by dip coating process. Sol. Energy Mater. Sol. Cells 2012, 99, 221–225. [Google Scholar] [CrossRef]
- Kovacik, P.; Willis, S.M.; Matichak, J.D.; Assender, H.E.; Watt, A.A. Effect of side groups on the vacuum thermal evap-oration of polythiophenes for organic electronics. Org. Electron. 2012, 13, 687–696. [Google Scholar] [CrossRef]
- Park, J.Y.; Advincula, R.C. Nanostructuring polymers, colloids, and nanomaterials at the air–Water interface through Langmuir and Langmuir–Blodgett techniques. Soft Matter. 2011, 7, 9829–9843. [Google Scholar] [CrossRef]
- Tekin-Kazancioglu, E.E.; Smith, P.J.; Schubert, U.S. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter. 2008, 4, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Mihailescu, C.M.; Moldovan, C.A.; Brasoveanu, C.; Savin, M.; Dinulescu, S.; Firtat, B.; Stanciu, I. Polyaniline Working Electrodes For Glucose Sensing. CAS 2019, 327–330. [Google Scholar] [CrossRef]
- Ansari, R. Polypyrrole conducting electroactive polymers: Synthesis and stability studies. J. Chem. 2006, 3, 186–201. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.-Z.; Maier, J. High-performance polypyrrole electrode materials for redox supercapacitors. Electrochem. Commun. 2006, 8, 937–940. [Google Scholar] [CrossRef]
- Kim, S.; Jang, L.; Park, H.S.; Lee, J.Y. Electrochemical deposition of conductive and adhesive polypyrrole-dopamine films. Sci. Rep. 2016, 6, 30475. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Hayashi, K.; Toko, K. Electrochemical deposition of nanostructured polyaniline on an insulating substrate. Electrochem. Commun. 2010, 12, 36–39. [Google Scholar] [CrossRef]
- Rodgers, M.M.; Alon, G.; Pai, V.M.; Conroy, R.S. Wearable technologies for active living and rehabilitation: Current research challenges and future opportunities. J. Rehabil. Assist. Technol. Eng. 2019, 6. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Seo, J.; Kim, C.; Joe, D.J.; Lee, H.E.; Im, T.H.; Seok, J.Y.; Jeong, C.K.; Ma, B.S.; Park, H.K.; et al. Flash-induced stretchable cu conductor via multiscale-interfacial couplings. Adv. Sci. 2018, 5, 1801146. [Google Scholar] [CrossRef]
- Serrano-Garcia, W.; Jayathilaka, W.A.D.M.; Chinnappan, A.; Tran, T.Q.; Baskar, C.; Thomas, S.W.; Ramakrishna, S. Nanocomposites for electronic applications that can be embedded for textiles and wearables. Sci. China Ser. E Technol. Sci. 2019, 62, 895–902. [Google Scholar] [CrossRef]
- Kuzmany, H.; Shi, L.; Kürti, J.; Koltai, J.; Chuvilin, A.; Saito, T.; Pichler, T. The growth of new extended carbon nanophases from ferrocene inside single-walled carbon nanotubes. Phys. Status Solidi Rapid Res. Lett. 2017, 11, 1700158. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Mitra, A.; Varma, G.D. Study of vortex glass-liquid transition in superconducting Fe(Te, Se) thin films on LaAlO3 substrates. J. Appl. Phys. 2019, 125, 193902. [Google Scholar] [CrossRef]
- Tantawy, H.R.; Kengne, B.-A.F.; McIlroy, D.N.; Nguyen, T.; Heo, D.; Qiang, Y.; Aston, D.E. X-ray photoelectron spectroscopy analysis for the chemical impact of solvent addition rate on electromagnetic shielding effectiveness of HCl-doped polyaniline nanopowders. J. Appl. Phys. 2015, 118, 175501. [Google Scholar] [CrossRef]
- Bashkin, I.O.; Antonov, V.E.; Bazhenov, A.V.; Bdikin, I.K.; Borisenko, D.N.; Krinichnaya, E.P.; Moravsky, A.P.; Harkunov, A.I.; Shul’Ga, Y.M.; Ossipyan, Y.A.; et al. Thermally stable hydrogen compounds obtained under high pressure on the basis of carbon nanotubes and nanofibers. J. Exp. Theor. Phys. Lett. 2004, 79, 226–230. [Google Scholar] [CrossRef]
- Kawasaki, S.; Matsuoka, Y.; Yokomae, T.; Nojima, Y.; Okino, F.; Touhara, H.; Kataura, H. XRD and TEM study of high pressure treated single-walled carbon nanotubes and C60-peapods. Carbon 2005, 43, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Futaba, D.N.; Yamada, T.; Kobashi, K.; Yumura, M.; Hata, K. Macroscopic wall number analysis of single-walled, double-walled, and few-walled carbon nanotubes by X-ray diffraction. J. Am. Chem. Soc. 2011, 133, 5716–5719. [Google Scholar] [CrossRef] [PubMed]
- Pierard, N.; Fonseca, A.; Colomer, J.-F.; Bossuot, C.; Benoit, J.-M.; Van Tendeloo, G.; Pirard, J.-P.; Nagy, J. Ball milling effect on the structure of single-wall carbon nanotubes. Carbon 2004, 42, 1691–1697. [Google Scholar] [CrossRef]
- Hasan, S.M.; Hussein, Z.A.A. The effect of H2SO4 acid as a doping agent on the structure of Polyaniline prepared at room temperature. Int. J. Appl. Innov. Eng. Manag. 2014, 3, 2319–4847. [Google Scholar]
- Tran, L.D.; Nguyen, D.T.; Nguyen, B.H.; Do, Q.P.; le Nguyen, H. Development of interdigitated arrays coated with functional polyaniline/MWCNT for electrochemical biodetection: Application for human papilloma virus. Talanta 2011, 85, 1560–1565. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V.; Awasthi, K. Polyaniline–Carbon nanotube composites: Preparation methods, properties, and appli-cations. Polym. Plast Technol. 2018, 57, 70–97. [Google Scholar] [CrossRef]
- Jain, S.; Chakane, S.; Samui, A.B.; Krishnamurthy, V.N.; Bhoraskar, S.V. Humidity sensing with weak acid-doped poly-aniline and its composites. Sens. Actuat B Chem. 2003, 96, 124–129. [Google Scholar] [CrossRef]
- Roy, A.; Ray, A.; Sadhukhan, P.; Naskar, K.; Lal, G.; Bhar, R.; Sinha, C.; Das, S. Polyaniline-multiwalled carbon nanotube (PANI-MWCNT): Room temperature resistive carbon monoxide (CO) sensor. Synth. Met. 2018, 245, 182–189. [Google Scholar] [CrossRef]
- Kukla, A.; Shirshov, Y.; Piletsky, S. Ammonia sensors based on sensitive polyaniline films. Sens. Actuators B Chem. 1996, 37, 135–140. [Google Scholar] [CrossRef]
Component | C-C, C=C, C-H | C-O, C-N | C=O | O-C=O | Aromatic |
---|---|---|---|---|---|
PANI: PSS/SWCNT:Fc | 79.07 | 17 | 1.44 | 0.9 | 1.6 |
PANI:PSS/SWCNT | 83.77 | 12.98 | 0.47 | 0.34 | 2.45 |
PANI | 56.68 | 17.78 | 7.71 | 11.35 | 6.48 |
Component | C=O | C-O | C-O-C |
---|---|---|---|
PANI:PSS/SWCNT:Fc | 13.54 | 34 | 52.45 |
PANI:SWCNT | 8.57 | 51.8 | 39.64 |
PANI | 15.24 | 29.62 | 55.14 |
Component | C-N+ | C-N= | C-NH- |
---|---|---|---|
PANI:PSS/SWCNT/Fc | 10.39 | 47.14 | 42.46 |
PANI:SWCNT | 6.7 | 20.92 | 72.38 |
PANI | 0 | 77.65 | 22.35 |
Component | C-N+ | C-N= | C-NH- |
---|---|---|---|
PANI:PSS/SWCNT/Fc | 10.39 | 47.14 | 42.46 |
PANI:SWCNT | 6.7 | 20.92 | 72.38 |
PANI | 0 | 77.65 | 22.35 |
Layer | Cycles | Fc (mM) | ΔR (kΩ) |
---|---|---|---|
PANI:PSS/SWCNT | 20 | - | 160 |
40 | - | 107 | |
PANI:PSS/SWCNT/Fc | 20 | 1.33 | 12 |
40 | 1.33 | 2 |
Sensor Layer | Range | Equation | LOD | R2 |
---|---|---|---|---|
PANI:PSS/SWCNT/Fc | 5–300 ppm | S(%) = (10.610 ± 3.520) + (0.160 ± 0.020) (ppm) | 66 ppm | 0.890 |
PANI:PSS/SWCNT/Fc | 40–300 ppm | S(%) = (23.810 ± 1.560) + (0.100 ± 0.009) (ppm) | 40 ppm | 0.970 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savin, M.; Mihailescu, C.-M.; Avramescu, V.; Dinulescu, S.; Firtat, B.; Craciun, G.; Brasoveanu, C.; Pachiu, C.; Romanitan, C.; Serban, A.-B.; et al. A New Hybrid Sensitive PANI/SWCNT/Ferrocene-Based Layer for a Wearable CO Sensor. Sensors 2021, 21, 1801. https://doi.org/10.3390/s21051801
Savin M, Mihailescu C-M, Avramescu V, Dinulescu S, Firtat B, Craciun G, Brasoveanu C, Pachiu C, Romanitan C, Serban A-B, et al. A New Hybrid Sensitive PANI/SWCNT/Ferrocene-Based Layer for a Wearable CO Sensor. Sensors. 2021; 21(5):1801. https://doi.org/10.3390/s21051801
Chicago/Turabian StyleSavin, Mihaela, Carmen-Marinela Mihailescu, Viorel Avramescu, Silviu Dinulescu, Bogdan Firtat, Gabriel Craciun, Costin Brasoveanu, Cristina Pachiu, Cosmin Romanitan, Andreea-Bianca Serban, and et al. 2021. "A New Hybrid Sensitive PANI/SWCNT/Ferrocene-Based Layer for a Wearable CO Sensor" Sensors 21, no. 5: 1801. https://doi.org/10.3390/s21051801
APA StyleSavin, M., Mihailescu, C. -M., Avramescu, V., Dinulescu, S., Firtat, B., Craciun, G., Brasoveanu, C., Pachiu, C., Romanitan, C., Serban, A. -B., Ion, A. C., & Moldovan, C. (2021). A New Hybrid Sensitive PANI/SWCNT/Ferrocene-Based Layer for a Wearable CO Sensor. Sensors, 21(5), 1801. https://doi.org/10.3390/s21051801