Multimodal Signal Analysis for Pain Recognition in Physiotherapy Using Wavelet Scattering Transform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Signal Preprocessing
2.2. Feature Extraction
2.3. Pain Labeling
2.4. Classification
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Williams, A.C.D.C.; Craig, K.D. Updating the definition of pain. Pain 2016, 157, 2420–2423. [Google Scholar] [CrossRef] [PubMed]
- Wideman, T.H.; Edwards, R.R.; Walton, D.M.; Martel, M.O.; Hudon, A.; Seminowicz, D.A. The Multimodal Assessment Model of Pain. Clin. J. Pain 2019, 35, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Herr, K.; Coyne, P.J.; Ely, E.; Gélinas, C.; Manworren, R.C. Pain Assessment in the Patient Unable to Self-Report: Clinical Practice Recommendations in Support of the ASPMN 2019 Position Statement. Pain Manag. Nurs. 2019, 20, 404–417. [Google Scholar] [CrossRef] [PubMed]
- Werner, P.; Al-Hamadi, A.; Niese, R.; Walter, S.; Gruss, S.; Traue, H.C. Towards pain monitoring: Facial expression, head pose, a new database, an automatic system and remaining challenges. In Proceedings of the British Machine Vision Conference, Bristol, UK, 9–13 September 2013; pp. 1–13. [Google Scholar]
- Kächele, M.; Amirian, M.; Thiam, P.; Werner, P.; Walter, S.; Palm, G.; Schwenker, F. Adaptive confidence learning for the personalization of pain intensity estimation systems. Evol. Syst. 2017, 8, 71–83. [Google Scholar] [CrossRef]
- Lopez-Martinez, D.; Rudovic, O.; Picard, R. Physiological and behavioral profiling for nociceptive pain estimation using personalized multitask learning. arXiv 2017, arXiv:1711.04036. [Google Scholar]
- Lopez-Martinez, D.; Picard, R. Multi-task neural networks for personalized pain recognition from physiological signals. In Proceedings of the IEEE Seventh International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), San Antonio, TX, USA, 23–26 October 2017; pp. 181–184. [Google Scholar]
- Lopez-Martinez, D.; Picard, R. Continuous pain intensity estimation from autonomic signals with recurrent neural networks. In Proceedings of the IEEE 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 5624–5627. [Google Scholar]
- Lucey, P.; Cohn, J.F.; Prkachin, K.M.; Solomon, P.E.; Matthews, I. Painful data: The UNBC-McMaster shoulder pain expression archive database. In Proceedings of the IEEE Face and Gesture, Santa Barbara, CA, USA, 21–23 March 2011; pp. 57–64. [Google Scholar]
- Wang, F.; Xiang, X.; Liu, C.; Tran, T.D.; Reiter, A.; Hager, G.D.; Quon, H.; Cheng, J.; Yuille, A.L. Regularizing face verification nets for pain intensity regression. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 1087–1091. [Google Scholar]
- Yang, R.; Tong, S.; Bordallo, M.; Boutellaa, E.; Peng, J.; Feng, X.; Hadid, A. On pain assessment from facial videos using spatio-temporal local descriptors. In Proceedings of the IEEE Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA), Oulu, Finland, 12–15 December 2016; pp. 1–6. [Google Scholar]
- Aung, M.S.; Kaltwang, S.; Romera-Paredes, B.; Martinez, B.; Singh, A.; Cella, M.; Valstar, M.; Meng, H.; Kemp, A.; Shafizadeh, M.; et al. The automatic detection of chronic pain-related expression: Requirements, challenges and the multimodal EmoPain dataset. IEEE Trans. Affect. Comput. 2015, 7, 435–451. [Google Scholar] [CrossRef] [Green Version]
- Olugbade, T.A.; Aung, M.H.; Bianchi-Berthouze, N.; Marquardt, N.; Williams, A.C. Bi-modal detection of painful reaching for chronic pain rehabilitation systems. In Proceedings of the 16th International Conference on Multimodal Interaction, Istanbul, Turkey, 12–16 November 2014; pp. 455–458. [Google Scholar]
- Olugbade, T.A.; Bianchi-Berthouze, N.; Marquardt, N.; Williams, A.C. Pain level recognition using kinematics and muscle activity for physical rehabilitation in chronic pain. In Proceedings of the IEEE International Conference on Affective Computing and Intelligent Interaction (ACII), Xi’an, China, 21–24 September 2015; pp. 243–249. [Google Scholar]
- Werner, P.; Al-Hamadi, A.; Gruss, S.; Walter, S. Twofold-Multimodal Pain Recognition with the X-ITE Pain Database. In Proceedings of the 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), Cambridge, UK, 3–6 December 2019; pp. 290–296. [Google Scholar]
- Zhang, X.; Yin, L.; Cohn, J.F.; Canavan, S.; Reale, M.; Horowitz, A.; Liu, P.; Girard, J.M. Bp4d-spontaneous: A high-resolution spontaneous 3d dynamic facial expression database. Image Vis. Comput. 2014, 32, 692–706. [Google Scholar] [CrossRef]
- Velana, M.; Gruss, S.; Layher, G.; Thiam, P.; Zhang, Y.; Schork, D.; Kessler, V.; Meudt, S.; Neumann, H.; Kim, J.; et al. The senseemotion database: A multimodal database for the development and systematic validation of an automatic pain-and emotion-recognition system. In Proceedings of the IAPR Workshop on Multimodal Pattern Recognition of Social Signals in Human-Computer Interaction, Cancun, Mexico, 4 December 2016; Springer: Berlin, Germany, 2016; pp. 127–139. [Google Scholar]
- Werner, P.; Al-Hamadi, A.; Limbrecht-Ecklundt, K.; Walter, S.; Gruss, S.; Traue, H.C. Automatic pain assessment with facial activity descriptors. IEEE Trans. Affect. Comput. 2016, 8, 286–299. [Google Scholar] [CrossRef]
- Chaitow, L. Can we describe what we do? J. Bodyw. Mov. Ther. 2014, 18, 315–316. [Google Scholar] [CrossRef] [Green Version]
- Chaitow, L. Fascial well-being: Mechanotransduction in manual and movement therapies. J. Bodyw. Mov. Ther. 2018, 22, 235–236. [Google Scholar] [CrossRef] [Green Version]
- Stecco, A.; Stecco, C.; Macchi, V.; Porzionato, A.; Ferraro, C.; Masiero, S.; Caro, R. RMI study and clinical correlations of ankle retinacula damage and outcomes of ankle sprain. Surg. Radiol. Anat. 2011, 33, 881–890. [Google Scholar] [CrossRef]
- Kromer, T.; Bie, R.; Bastiaenen, C. Effectiveness of individualized physiotherapy on pain and functioning compared to a standard exercise protocol in patients presenting with clinical signs of subacromial impingement syndrome. A randomized controlled trial. BMC Musculoskelet. Disord. 2010, 11, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stecco, A.; Meneghini, A.; Stern, R.; Stecco, C.; Imamura, M. Ultrasonography in myofascial neck pain: Randomized clinical trial for diagnosis and follow-up. Surg. Radiol. Anat. 2014, 36, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Price, D.D.; McGrath, P.A.; Rafii, A.; Buckingham, B. The validation of visual analogue scales as ratio scale measures for chronic and experimental pain. Pain 1983, 17, 45–56. [Google Scholar] [CrossRef]
- Garland, E.L. Pain processing in the human nervous system: A selective review of nociceptive and biobehavioral pathways. Prim. Care Clin. Off. Pract. 2012, 39, 561–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breivik, H.; Borchgrevink, P.; Allen, S.; Rosseland, L.; Romundstad, L.; Breivik Hals, E.; Kvarstein, G.; Stubhaug, A. Assessment of pain. Br. J. Anaesth. 2008, 101, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Badura, A.; Bieńkowska, M.; Masłowska, A.; Czarlewski, R.; Myśliwiec, A.; Pietka, E. Multimodal Signal Acquisition for Pain Assessment in Physiotherapy. In Information Technology in Biomedicine; Springer International Publishing: Cham, Switzerland, 2021; pp. 227–237. [Google Scholar]
- Greco, A.; Valenza, G.; Lanata, A.; Scilingo, E.P.; Citi, L. CvxEDA: A convex optimization approach to electrodermal activity processing. IEEE Trans. Biomed. Eng. 2016, 63, 797–804. [Google Scholar] [CrossRef] [Green Version]
- Andén, J.; Mallat, S. Deep scattering spectrum. IEEE Trans. Signal Process. 2014, 62, 4114–4128. [Google Scholar] [CrossRef] [Green Version]
- Long, X.; Fonseca, P.; Foussier, J.; Haakma, R.; Aarts, R.M. Sleep and wake classification with actigraphy and respiratory effort using dynamic warping. IEEE J. Biomed. Health Inform. 2014, 18, 1272–1284. [Google Scholar] [CrossRef]
- Grossmann, A.; Morlet, J. Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape. SIAM J. Math. Anal. 1984, 15, 723–736. [Google Scholar] [CrossRef]
- Vapnik, V. Universal learning technology: Support Vector Machines. NEC J. Adv. Technol. 2005, 2, 137–144. [Google Scholar]
- Patle, A.; Chouhan, D.S. SVM kernel functions for classification. In Proceedings of the IEEE International Conference on Advances in Technology and Engineering (ICATE), Mumbai, India, 23–25 January 2013; pp. 1–9. [Google Scholar]
- Schapire, R.E. A brief introduction to boosting. IJCAI 1999, 99, 1401–1406. [Google Scholar]
- Werner, P.; Lopez-Martinez, D.; Walter, S.; Al-Hamadi, A.; Gruss, S.; Picard, R. Automatic Recognition Methods Supporting Pain Assessment: A Survey. IEEE Trans. Affect. Comput. 2019. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Tu, P.; Aragones, A. Learning Person-Specific Models for Facial Expression and Action Unit Recognition. Pattern Recogn. Lett. 2013, 34, 1964–1970. [Google Scholar] [CrossRef]
- Lo Presti, L.; La Cascia, M. Boosting Hankel Matrices for Face Emotion Recognition and Pain Detection. Comput. Vis. Image Underst. 2017, 156, 19–33. [Google Scholar] [CrossRef]
- Walter, S.; Gruss, S.; Limbrecht-Ecklundt, K.; Traue, H.; Werner, P.; Al-Hamadi, A.; Diniz, N.; Silva, G.M.; Andrade, A. Automatic pain quantification using autonomic parameters. Psychol. Neurosci. 2014, 7, 363–380. [Google Scholar] [CrossRef] [Green Version]
- Kächele, M.; Thiam, P.; Amirian, M.; Schwenker, F.; Palm, G. Methods for Person-Centered Continuous Pain Intensity Assessment From Bio-Physiological Channels. IEEE J. Sel. Top. Signal Process. 2016, 10, 854–864. [Google Scholar] [CrossRef]
- Adamczyk, W.; Farley, D.; Wiercioch-Kuzianik, K.; Bajcar, A.; Buglewicz, E.; Nastaj, J.; Gruszka, A.; Bąbel, P. Memory of pain in adults: A protocol for systematic review and meta-analysis. Syst. Rev. 2019, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajcar, A.; Adamczyk, W.; Wiercioch-Kuzianik, K.; Bąbel, P. Nocebo hyperalgesia can be induced by classical conditioning without involvement of expectancy. PLoS ONE 2020, 15, e0232108. [Google Scholar] [CrossRef] [PubMed]
- Thong, I.S.; Jensen, M.P.; Miró, J.; Tan, G. The validity of pain intensity measures: What do the NRS, VAS, VRS, and FPS-R measure? Scand. J. Pain 2018, 18, 99–107. [Google Scholar] [CrossRef] [PubMed]
Severe Pain vs. No-Pain | Severe Pain vs. Moderate Pain | Moderate Pain vs. No-Pain | ||||
---|---|---|---|---|---|---|
AdaBoost | SVM | AdaBoost | SVM | AdaBoost | SVM | |
Accuracy | 0.94 ± 0.02 | 0.63 ± 0.10 | 0.79 ± 0.04 | 0.54 ± 0.10 | 0.85 ± 0.04 | 0.61 ± 0.16 |
Sensitivity | 0.97 ± 0.02 | 0.64 ± 0.35 | 0.79 ± 0.07 | 0.76 ± 0.25 | 0.95 ± 0.04 | 0.39 ± 0.40 |
Precision | 0.92 ± 0.04 | 0.66 ± 0.08 | 0.79 ± 0.05 | 0.59 ± 0.15 | 0.80 ± 0.05 | 0.73 ± 0.05 |
Specificity | 0.91 ± 0.04 | 0.67 ± 0.20 | 0.79 ± 0.06 | 0.37 ± 0.39 | 0.76 ± 0.08 | 0.88 ± 0.13 |
F1 score | 0.95 ± 0.02 | 0.58 ± 0.25 | 0.79 ± 0.05 | 0.61 ± 0.05 | 0.87 ± 0.04 | 0.38 ± 0.38 |
Severe Pain vs. No-Pain | Severe Pain vs. Moderate Pain | Moderate Pain vs. No-Pain | ||||
---|---|---|---|---|---|---|
AdaBoost | SVM | AdaBoost | SVM | AdaBoost | SVM | |
Accuracy | 0.82 ± 0.15 | 0.56 ± 0.18 | 0.64 ± 0.10 | 0.50 ± 0.00 | 0.85 ± 0.12 | 0.62 ± 0.17 |
Sensitivity | 0.77 ± 0.32 | 0.40 ± 0.49 | 0.47 ± 0.27 | 0.59 ± 0.49 | 0.95 ± 0.07 | 0.37 ± 0.48 |
Precision | 0.89 ± 0.13 | 0.39 ± 0.35 | 0.74 ± 0.16 | 0.50 ± 0.00 | 0.81 ± 0.14 | 0.76 ± 0.13 |
Specificity | 0.88 ± 0.16 | 0.71 ± 0.30 | 0.80 ± 0.19 | 0.40 ± 0.49 | 0.74 ± 0.24 | 0.87 ± 0.23 |
F1 score | 0.77 ± 0.28 | 0.32 ± 0.40 | 0.52 ± 0.24 | 0.39 ± 0.33 | 0.87 ± 0.09 | 0.31 ± 0.42 |
Severe Pain | Moderate Pain | No-Pain | |
---|---|---|---|
Accuracy | 0.84 ± 0.03 | 0.77 ± 0.04 | 0.91 ± 0.02 |
Sensitivity | 0.77 ± 0.07 | 0.77 ± 0.07 | 0.75 ± 0.07 |
Precision | 0.76 ± 0.06 | 0.64 ± 0.05 | 0.98 ± 0.03 |
Specificity | 0.87 ± 0.04 | 0.78 ± 0.05 | 0.99 ± 0.01 |
F1 score | 0.76 ± 0.05 | 0.69 ± 0.05 | 0.85 ± 0.05 |
Severe Pain | Moderate Pain | No-Pain | |
---|---|---|---|
Accuracy | 0.79 ± 0.17 | 0.80 ± 0.10 | 0.92 ± 0.13 |
Sensitivity | 0.82 ± 0.25 | 0.64 ± 0.30 | 0.81 ± 0.21 |
Precision | 0.70 ± 0.21 | 0.78 ± 0.16 | 0.96 ± 0.18 |
Specificity | 0.79 ± 0.20 | 0.88 ± 0.14 | 0.97 ± 0.13 |
F1 score | 0.73 ± 0.21 | 0.63 ± 0.26 | 0.87 ± 0.19 |
Severe Pain | Moderate Pain | No-Pain | ||||
---|---|---|---|---|---|---|
scattering | STFT | scattering | STFT | scattering | STFT | |
Accuracy | 0.84 ± 0.03 | 0.80 ± 0.03 | 0.77 ± 0.04 | 0.73 ± 0.04 | 0.91 ± 0.02 | 0.91 ± 0.02 |
Sensitivity | 0.77 ± 0.07 | 0.63 ± 0.09 | 0.77 ± 0.07 | 0.79 ± 0.08 | 0.75 ± 0.07 | 0.74 ± 0.06 |
Precision | 0.76 ± 0.06 | 0.74 ± 0.06 | 0.64 ± 0.05 | 0.57 ± 0.05 | 0.98 ± 0.03 | 0.98 ± 0.03 |
Specificity | 0.87 ± 0.04 | 0.89 ± 0.04 | 0.78 ± 0.05 | 0.70 ± 0.06 | 0.99 ± 0.01 | 0.99 ± 0.01 |
F1 score | 0.76 ± 0.05 | 0.67 ± 0.06 | 0.69 ± 0.05 | 0.66 ± 0.05 | 0.85 ± 0.05 | 0.84 ± 0.04 |
Severe Pain | Moderate Pain | No-Pain | ||||
---|---|---|---|---|---|---|
scattering | STFT | scattering | STFT | scattering | STFT | |
Accuracy | 0.79 ± 0.17 | 0.77 ± 0.14 | 0.80 ± 0.10 | 0.77 ± 0.09 | 0.92 ± 0.13 | 0.91 ± 0.14 |
Sensitivity | 0.82 ± 0.25 | 0.76 ± 0.30 | 0.64 ± 0.30 | 0.57 ± 0.34 | 0.81 ± 0.21 | 0.84 ± 0.17 |
Precision | 0.70 ± 0.21 | 0.68 ± 0.20 | 0.78 ± 0.16 | 0.75 ± 0.16 | 0.96 ± 0.18 | 0.95 ± 0.17 |
Specificity | 0.79 ± 0.20 | 0.77 ± 0.21 | 0.88 ± 0.14 | 0.87 ± 0.15 | 0.97 ± 0.13 | 0.95 ± 0.19 |
F1 score | 0.73 ± 0.21 | 0.66 ± 0.22 | 0.63 ± 0.26 | 0.56 ± 0.29 | 0.87 ± 0.19 | 0.88 ± 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badura, A.; Masłowska, A.; Myśliwiec, A.; Piętka, E. Multimodal Signal Analysis for Pain Recognition in Physiotherapy Using Wavelet Scattering Transform. Sensors 2021, 21, 1311. https://doi.org/10.3390/s21041311
Badura A, Masłowska A, Myśliwiec A, Piętka E. Multimodal Signal Analysis for Pain Recognition in Physiotherapy Using Wavelet Scattering Transform. Sensors. 2021; 21(4):1311. https://doi.org/10.3390/s21041311
Chicago/Turabian StyleBadura, Aleksandra, Aleksandra Masłowska, Andrzej Myśliwiec, and Ewa Piętka. 2021. "Multimodal Signal Analysis for Pain Recognition in Physiotherapy Using Wavelet Scattering Transform" Sensors 21, no. 4: 1311. https://doi.org/10.3390/s21041311
APA StyleBadura, A., Masłowska, A., Myśliwiec, A., & Piętka, E. (2021). Multimodal Signal Analysis for Pain Recognition in Physiotherapy Using Wavelet Scattering Transform. Sensors, 21(4), 1311. https://doi.org/10.3390/s21041311