A Systematic Review of Sensing Technologies for Wearable Sleep Staging
Abstract
:1. Introduction
2. Methodology
2.1. Data Sources
2.2. Eligibility Criteria
- Does the article present a sensor/method for sleep staging?
- Does the sensor/method in article classify at least one stage of sleep (including wake as it is considered a distinct stage based on both the R&K and AASM rules of classification)?
- Is the sensor/method for use for staging human sleep?
- Does the article discuss potential use of the sensor/method in wearable context? If not, is the sensor/method obviously suitable for wearable use (e.g., wrist-based devices)?
- Is the sensor/method designed for monitoring overnight sleep (i.e., not only daytime naps)?
- Is the sensing modality clearly defined?
- Has the work being presented been validated against a reference method?
- Does the study report at least one quantifiable measure of accuracy?
2.3. Data Extraction
2.4. Risk of Bias
3. Results
3.1. Overview of Different Sensing Modalities for Sleep Staging
3.1.1. Electroencephalogram
3.1.2. Electrooculogram
3.1.3. Electromyogram
3.1.4. Electrocardiogram
3.1.5. Photoplethysmogram
3.1.6. Accelerometer
3.1.7. Respiratory Inductance Plethysmography
3.1.8. Pressure Sensors
3.1.9. Radar Sensors
3.1.10. Audio
3.1.11. Nasal Airflow
3.1.12. Sonar Sensors
3.1.13. Electrodermal Activity Sensors
3.2. Discussion on Sensing Modalities
3.3. Signals and Features
3.4. Sleep Stages
3.5. Accuracy
3.6. Usability
3.7. Power Consumption
3.8. Challenges and Future Directions
4. Conclusions
Funding
Conflicts of Interest
Abbreviations
PSG | Polysomnography |
EEG | Electroencephalography/Electroencephalogram |
EOG | Electrooculography/Electrooculogram |
EMG | Electromyography/Electromyogram |
ECG | Electrocardiography/Electrocardiogram |
BCG | Ballistocardiography/Ballistocardiogram |
ACC | Accelerometer |
RIP | Respiratory Inductive Plethysmography |
EDA | Electrodermal Activity |
PPG | Photoplethysmography/Photoplethysmogram |
REM | Rapid Eye Movement |
NREM | Non-Rapid Eye Movement |
R&K | Rechtschaffen and Kales |
AASM | American Academy of Sleep Medicine |
HBI | Heart Beat Interval |
RRI | R-R Interval |
PPI | Pulse Peak Interval |
HRV | Heart Rate Variability |
PRV | Pulse Rate Variability |
RRV | Respiratory Rate Variability |
HR | Heart Rate |
RR | Respiratory Rate |
PTT | Pulse Transit Time |
EDR | ECG-Derived Respiration |
LED | Light Emitting Diode |
IoT | Internet of Things |
OSA | Obstructive Sleep Apnoea |
SDB | Sleep Disordered Breathing |
PLMS | Periodic Limb Movements of Sleep |
References
- Sleep SOS Report: The Impact of Sleep on Society; The Sleep Alliance: San Diego, CA, USA, 2007.
- Institute of Medicine; Board on Health Sciences Policy; Committee on Sleep Medicine and Research; Colten, H.R.; Altevogt, B.M. (Eds.) Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar] [CrossRef]
- Liu, S.Y.; Perez, M.A.; Lau, N. The impact of sleep disorders on driving safety—Findings from the Second Strategic Highway Research Program naturalistic driving study. Sleep 2018, 41, zsy023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garbarino, S.; Lanteri, P.; Durando, P.; Magnavita, N.; Sannita, W. Co-Morbidity, Mortality, Quality of Life and the Healthcare/Welfare/Social Costs of Disordered Sleep: A Rapid Review. Int. J. Environ. Res. Public Health 2016, 13, 831. [Google Scholar] [CrossRef]
- Vaughn, B.V.; Giallanza, P. Technical Review of Polysomnography. Chest 2008, 134, 1310–1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iber, C.; Ancoli-Israel, S.; Chesson, A.; Quan, S. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications; American Academy of Sleep Medicine: Westchester, IL, USA, 2007. [Google Scholar]
- Rechtschaffen, A.; Kales, A. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects; Public Health Service, U.S. Government Printing Office: Washington, DC, USA, 1968.
- Flemons, W.W.; Douglas, N.J.; Kuna, S.T.; Rodenstein, D.O.; Wheatley, J. Access to Diagnosis and Treatment of Patients with Suspected Sleep Apnea. Am. J. Respir. Crit. Care Med. 2004, 169, 668–672. [Google Scholar] [CrossRef]
- Ronzhina, M.; Janoušek, O.; Kolářová, J.; Nováková, M.; Honzík, P.; Provazník, I. Sleep scoring using artificial neural networks. Sleep Med. Rev. 2012, 16, 251–263. [Google Scholar] [CrossRef]
- Bruyneel, M.; Van den Broecke, S.; Libert, W.; Ninane, V. Real-time attended home-polysomnography with telematic data transmission. Int. J. Med. Inform. 2013, 82, 696–701. [Google Scholar] [CrossRef]
- Boostani, R.; Karimzadeh, F.; Nami, M. A comparative review on sleep stage classification methods in patients and healthy individuals. Comput. Methods Programs Biomed. 2017, 140, 77–91. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kortelainen, J.M.; Mendez, M.O.; Bianchi, A.M.; Matteucci, M.; Cerutti, S. Sleep Staging Based on Signals Acquired Through Bed Sensor. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 776–785. [Google Scholar] [CrossRef]
- Emfit Ltd. Emfit Sleep Tracking & Monitoring. Available online: https://www.emfit.com/ (accessed on 25 January 2021).
- Hedner, J.; White, D.; Malhotra, A.; Cohen, S.; Pittman, S.; Zou, D.; Grote, L.; Pillar, G. Sleep Staging Based on Autonomic Signals: A Multi-Center Validation Study. J. Clin. Sleep Med. 2011, 7, 301–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itamar Medical. WatchPAT 100. Available online: https://www.itamar-medical.com/ (accessed on 11 February 2021).
- Sloboda, J.; Das, M. A simple sleep stage identification technique for incorporation in inexpensive electronic sleep screening devices. In Proceedings of the 2011 IEEE National Aerospace and Electronics Conference (NAECON), Dayton, OH, USA, 20–22 July 2011; pp. 21–24. [Google Scholar] [CrossRef]
- Ichimaru, Y.; Moody, G. Development of the polysomnographic database on CD-ROM. Psychiatry Clin. Neurosci. 1999, 53, 175–177. [Google Scholar] [CrossRef] [Green Version]
- Kanady, J.C.; Drummond, S.P.A.; Mednick, S.C. Actigraphic assessment of a polysomnographic-recorded nap: A validation study. J. Sleep Res. 2011, 20, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Philips Respironics. Actiwatch. Available online: https://www.philips.co.uk/healthcare/product/HC1044809/actiwatch-2-activity-monitor (accessed on 11 February 2021).
- Shambroom, J.R.; FÁbregas, S.E.; Johnstone, J. Validation of an automated wireless system to monitor sleep in healthy adults. J. Sleep Res. 2012, 21, 221–230. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, D.; Zhao, J.; He, M.; Wang, Y.; Zhang, Q. RASS: A portable real-time automatic sleep scoring system. In Proceedings of the 2012 IEEE 33rd Real-Time Systems Symposium, San Juan, PR, USA, 4–7 December 2012; pp. 105–114. [Google Scholar] [CrossRef]
- Wang, J.S.; Shih, G.R.; Chiang, W.C. Sleep stage classification of sleep apnea patients using decision-tree-based support vector machines based on ECG parameters. In Proceedings of the 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics, Hong Kong, China, 5–7 January 2012; Volume 25, pp. 285–288. [Google Scholar] [CrossRef]
- Nakazaki, K.; Kitamura, S.; Motomura, Y.; Hida, A.; Kamei, Y.; Miura, N.; Mishima, K. Validity of an algorithm for determining sleep/wake states using a new actigraph. J. Physiol. Anthropol. 2014, 33, 31. [Google Scholar] [CrossRef] [Green Version]
- Kosmadopoulos, A.; Sargent, C.; Darwent, D.; Zhou, X.; Roach, G. Alternatives to polysomnography (PSG): A validation of wrist actigraphy and a partial-PSG system. Behav. Res. Methods 2014, 46, 1032–1041. [Google Scholar] [CrossRef] [PubMed]
- Long, X.; Fonseca, P.; Foussier, J.; Haakma, R.; Aarts, R.M. Sleep and Wake Classification With Actigraphy and Respiratory Effort Using Dynamic Warping. IEEE J. Biomed. Health Inform. 2014, 18, 1272–1284. [Google Scholar] [CrossRef]
- Domingues, A.; Paiva, T.; Sanches, J.M. Hypnogram and Sleep Parameter Computation From Activity and Cardiovascular Data. IEEE Trans. Biomed. Eng. 2014, 61, 1711–1719. [Google Scholar] [CrossRef]
- SOMNO Medics. SOMNOWatch Plus. Available online: https://somnomedics.de/en/solutions/sleep_diagnostics/actigraphy/somnowatch-plus-actigraphy/ (accessed on 11 February 2021).
- Imtiaz, S.A.; Rodriguez-Villegas, E. A Low Computational Cost Algorithm for REM Sleep Detection Using Single Channel EEG. Ann. Biomed. Eng. 2014, 42, 2344–2359. [Google Scholar] [CrossRef] [Green Version]
- University of MONS—TCTS Laboratory. The DREAMS Subjects Database. Available online: https://zenodo.org/record/2650142#.YA6QV5P7TJ8 (accessed on 20 December 2020).
- Aboalayon, K.A.; Ocbagabir, H.T.; Faezipour, M. Efficient sleep stage classification based on EEG signals. In Proceedings of the IEEE Long Island Systems, Applications and Technology (LISAT) Conference 2014, Farmingdale, NY, USA, 2 May 2014. [Google Scholar] [CrossRef]
- Kemp, B.; Zwinderman, A.H.; Tuk, B.; Kamphuisen, H.A.C.; Oberye, J.J.L. Analysis of a sleep-dependent neuronal feedback loop: The slow-wave microcontinuity of the EEG. IEEE Trans. Biomed. Eng. 2000, 47, 1185–1194. [Google Scholar] [CrossRef] [PubMed]
- Dehkordi, P.; Garde, A.; Karlen, W.; Wensley, D.; Ansermino, J.M.; Dumont, G.A. Sleep stage classification in children using photo plethysmogram pulse rate variability. Comput. Cardiol. 2014 2014, 41, 297–300. [Google Scholar]
- Samy, L.; Huang, M.C.; Liu, J.J.; Xu, W.; Sarrafzadeh, M. Unobtrusive sleep stage identification using a pressure-sensitive bed sheet. IEEE Sens. J. 2014, 14, 2092–2101. [Google Scholar] [CrossRef]
- Slater, J.; Botsis, T.; Walsh, J.; King, S.; Straker, L.; Eastwood, P. Assessing sleep using hip and wrist actigraphy: Hip and wrist actigraphy. Sleep Biol. Rhythm. 2015, 13. [Google Scholar] [CrossRef] [Green Version]
- ActiGraph. GT3X. Available online: https://actigraphcorp.com/support/activity-monitors/gt3x/ (accessed on 21 January 2021).
- Fietze, I.; Penzel, T.; Partinen, M.; Sauter, J.; Küchler, G.; Suvoro, A.; Hein, H. Actigraphy combined with EEG compared to polysomnography in sleep apnea patients. Physiol. Meas. 2015, 36, 385–396. [Google Scholar] [CrossRef]
- SOMNOmedics. SOMNOscreen. Available online: https://somnomedics.de/en/solutions/sleep_diagnostics/stationary_sleep_lab_psg/somnoscreen-plus/ (accessed on 21 December 2020).
- Wu, H.T.; Talmon, R.; Lo, Y.L. Assess Sleep Stage by Modern Signal Processing Techniques. IEEE Trans. Biomed. Eng. 2015, 62, 1159–1168. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhu, X.; Chen, W. Automatic sleep staging based on ECG signals using hidden Markov models. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 530–533. [Google Scholar] [CrossRef]
- Terzano, M.; Parrino, L.; Sherieri, A.; Chervin, R.; Chokroverty, S.; Guilleminault, C.; Hirshkowitz, M.; Mahowald, M.; Moldofsky, H.; Rosa, A.; et al. Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep. Sleep Med. 2001, 2, 537–553. [Google Scholar] [CrossRef]
- Imtiaz, S.; Rodriguez-Villegas, E. Automatic sleep staging using state machine-controlled decision trees. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Loparo, K.; Kelly, M.; Kalpan, R. Evaluation of an automated single-channel sleep staging algorithm. Nat. Sci. Sleep 2015, 7, 101–111. [Google Scholar] [CrossRef] [Green Version]
- General Sleep Corporation. Zmachine. Available online: https://www.generalsleep.com/zmachine-insight.html (accessed on 20 December 2020).
- Hassan, A.R.; Bashar, S.K.; Bhuiyan, M.I.H. On the classification of sleep states by means of statistical and spectral features from single channel Electroencephalogram. In Proceedings of the 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Kochi, India, 10–13 August 2015; pp. 2238–2243. [Google Scholar] [CrossRef]
- Tataraidze, A.; Anishchenko, L.; Korostovtseva, L.; Kooij, B.J.; Bochkarev, M.; Sviryaev, Y. Sleep stage classification based on bioradiolocation signals. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 362–365. [Google Scholar] [CrossRef]
- Tataraidze, A.; Anishchenko, L.; Korostovtseva, L.; Kooij, B.J.; Bochkarev, M.; Sviryaev, Y. Sleep stage classification based on respiratory signal. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 358–361. [Google Scholar] [CrossRef]
- Natus Neurology. Embla N7000. Available online: https://partners.natus.com/ (accessed on 20 December 2020).
- Kagawa, M.; Sasaki, N.; Suzumura, K.; Matsui, T. Sleep stage classification by body movement index and respiratory interval indices using multiple radar sensors. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 7606–7609. [Google Scholar] [CrossRef]
- Nguyen, A.; Alqurashi, R.; Raghebi, Z.; Banaei-Kashani, F.; Halbower, A.C.; Vu, T. A lightweight and inexpensive in-ear sensing system for automatic whole-night sleep stage monitoring. In Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM; ACM: New York, NY, USA, 2016; pp. 230–244. [Google Scholar] [CrossRef]
- Kagawa, M.; Suzumura, K.; Matsui, T. Sleep stage classification by non-contact vital signs indices using Doppler radar sensors. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 4913–4916. [Google Scholar] [CrossRef]
- Singh, J.; Sharma, R.K.; Gupta, A.K. A method of REM-NREM sleep distinction using ECG signal for unobtrusive personal monitoring. Comput. Biol. Med. 2016, 78, 138–143. [Google Scholar] [CrossRef]
- O’Reilly, C.; Gosselin, N.; Carrier, J.; Nielsen, T. Montreal Archive of Sleep Studies: An open-access resource for instrument benchmarking and exploratory research. J. Sleep Res. 2014, 23, 628–635. [Google Scholar] [CrossRef]
- Ye, Y.; Yang, K.; Jiang, J.; Ge, B. Automatic sleep and wake classifier with heart rate and pulse oximetry: Derived dynamic time warping features and logistic model. In Proceedings of the 2016 Annual IEEE Systems Conference (SysCon), Orlando, FL, USA, 18–21 April 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Quan, S.; Howard, B.; Iber, C.; Kiley, J.; Nieto, F.; O’Connor, G.; Rapoport, D.; Redline, S.; Robbins, J.; Samet, J.; et al. The Sleep Heart Health Study: Design, Rationale, and Methods. Sleep 1998, 20, 1077–1085. [Google Scholar] [CrossRef] [Green Version]
- Dafna, E.; Halevi, M.; Ben Or, D.; Tarasiuk, A.; Zigel, Y. Estimation of macro sleep stages from whole night audio analysis. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 2847–2850. [Google Scholar] [CrossRef]
- Solid State Sound. Edirol R-4. Available online: https://www.solidstatesound.co.uk/edirol_r4.htm (accessed on 21 December 2020).
- Shahrbabaki, S.S.; Ahmed, B.; Penzel, T.; Cvetkovic, D. Pulse transit time and heart rate variability in sleep staging. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 3469–3472. [Google Scholar] [CrossRef]
- Yang, J.; Keller, J.M.; Popescu, M.; Skubic, M. Sleep stage recognition using respiration signal. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 2843–2846. [Google Scholar] [CrossRef]
- Lucey, B.P.; Mcleland, J.S.; Toedebusch, C.D.; Boyd, J.; Morris, J.C.; Landsness, E.C.; Yamada, K.; Holtzman, D.M. Comparison of a single-channel EEG sleep study to polysomnography. J. Sleep Res. 2016, 25, 625–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Advanced Brain Monitoring. Sleep Profiler. Available online: https://www.advancedbrainmonitoring.com/products/sleep-profiler (accessed on 21 December 2020).
- Osterbauer, B.; Koempel, J.; Ward, S.; Fisher, L.; Don, D. A Comparison Study Of The Fitbit Activity Monitor And PSG For Assessing Sleep Patterns And Movement In Children. J. Otolaryngol. Adv. 2016, 1, 24. [Google Scholar] [CrossRef] [Green Version]
- Fitbit. Fitbit Activity Trackers. Available online: https://www.fitbit.com/ (accessed on 21 December 2020).
- de Zambotti, M.; Baker, F.C.; Willoughby, A.R.; Godino, J.G.; Wing, D.; Patrick, K.; Colrain, I.M. Measures of sleep and cardiac functioning during sleep using a multi-sensory commercially-available wristband in adolescents. Physiol. Behav. 2016, 158, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Goverdovsky, V.; Morrell, M.J.; Mandic, D.P. Automatic Sleep Monitoring Using Ear-EEG. IEEE J. Transl. Eng. Health Med. 2017, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, P.; Den Teuling, N.; Long, X.; Aarts, R.M. Cardiorespiratory Sleep Stage Detection Using Conditional Random Fields. IEEE J. Biomed. Health Inform. 2017, 21, 956–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silveira, T.; Kozakevicius, A.; Rodrigues, C. Single-channel EEG sleep stage classification based on a streamlined set of statistical features in wavelet domain. Med Biol. Eng. Comput. 2017, 55, 343–352. [Google Scholar] [CrossRef]
- Beattie, Z.; Oyang, Y.; Statan, A.; Ghoreyshi, A.; Pantelopoulos, A.; Russell, A.; Heneghan, C. Estimation of sleep stages in a healthy adult population from optical plethysmography and accelerometer signals. Physiol. Meas. 2017, 38, 1968–1979. [Google Scholar] [CrossRef]
- Yuda, E.; Yoshida, Y.; Sasanabe, R.; Tanaka, H.; Shiomi, T.; Hayano, J. Sleep stage classification by a combination of actigraphic and heart rate signals. J. Low Power Electron. Appl. 2017, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Dey, J.; Bhowmik, T.; Sahoo, S.; Tiwari, V.N. Wearable PPG sensor based alertness scoring system. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea, 11–15 July 2017; pp. 2422–2425. [Google Scholar] [CrossRef]
- Fonseca, P.; Weysen, T.; Goelema, M.S.; Møst, E.I.; Radha, M.; Lunsingh Scheurleer, C.; van den Heuvel, L.; Aarts, R.M. Validation of Photoplethysmography-Based Sleep Staging Compared With Polysomnography in Healthy Middle-Aged Adults. Sleep 2017, 40, zsx097. [Google Scholar] [CrossRef]
- Imtiaz, S.A.; Jiang, Z.; Rodriguez-Villegas, E. An Ultralow Power System on Chip for Automatic Sleep Staging. IEEE J. Solid-State Circuits 2017, 52, 822–833. [Google Scholar] [CrossRef]
- Wei, R.; Zhang, X.; Wang, J.; Dang, X. The research of sleep staging based on single-lead electrocardiogram and deep neural network. Biomed. Eng. Lett. 2017, 8, 87–93. [Google Scholar] [CrossRef]
- Tal, A.; Shinar, Z.; Shaki, D.; Codish, S.; Goldbart, A. Validation of Contact-Free Sleep Monitoring Device with Comparison to Polysomnography. J. Clin. Sleep Med. 2017, 13. [Google Scholar] [CrossRef] [Green Version]
- EarlySense. EarlySense Proactive Patient Care. Available online: https://www.earlysense.com/ (accessed on 21 January 2021).
- Dimitriadis, S.I.; Salis, C.; Linden, D. A novel, fast and efficient single-sensor automatic sleep-stage classification based on complementary cross-frequency coupling estimates. Clin. Neurophysiol. 2018, 129, 815–828. [Google Scholar] [CrossRef]
- Li, Q.; Li, Q.; Liu, C.; Shashikumar, S.; Nemati, S.; Clifford, G. Deep learning in the cross-time-frequency domain for sleep staging from a single lead electrocardiogram. Physiol. Meas. 2018, 39. [Google Scholar] [CrossRef] [PubMed]
- de Zambotti, M.; Goldstone, A.; Claudatos, S.; Colrain, I.M.; Baker, F.C. A validation study of Fitbit Charge 2™ compared with polysomnography in adults. Chronobiol. Int. 2018, 35, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Widasari, E.R.; Tanno, K.; Tamura, H. Automatic Sleep Stage Detection Based on HRV Spectrum Analysis. In Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 869–874. [Google Scholar] [CrossRef]
- Zhang, X.; Kou, W.; Chang, E.I.; Gao, H.; Fan, Y.; Xu, Y. Sleep stage classification based on multi-level feature learning and recurrent neural networks via wearable device. Comput. Biol. Med. 2018, 103, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Quante, M.; Kaplan, E.; Cailler, M.; Rueschman, M.; Wang, R.; Weng, J.; Taveras, E.; Redline, S. Actigraphy-based sleep estimation in adolescents and adults: A comparison with polysomnography using two scoring algorithms. Nat. Sci. Sleep 2018, 10, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Lesmana, T.F.; Isa, S.M.; Surantha, N. Sleep Stage Identification Using the Combination of ELM and PSO Based on ECG Signal and HRV. In Proceedings of the 2018 3rd International Conference on Computer and Communication Systems (ICCCS), Nagoya, Japan, 27–30 April 2018; pp. 436–439. [Google Scholar] [CrossRef]
- Yoon, H.; Hwang, S.H.; Choi, J.W.; Lee, Y.J.; Jeong, D.U.; Park, K.S. Slow-Wave Sleep Estimation for Healthy Subjects and OSA Patients Using R-R Intervals. IEEE J. Biomed. Health Inform. 2018, 22, 119–128. [Google Scholar] [CrossRef]
- Pigeon, W.R.; Taylor, M.; Bui, A.; Oleynk, C.; Walsh, P.; Bishop, T.M. Validation of the sleep-wake scoring of a new wrist-worn sleep monitoring device. J. Clin. Sleep Med. 2018, 14, 1057–1062. [Google Scholar] [CrossRef]
- Palotti, J.; Mall, R.; Aupetit, M.; Rueschman, M.; Singh, M.; Sathyanarayana, A.; Taheri, S.; Fernandez-Luque, L. Benchmark on a large cohort for sleep-wake classification with machine learning techniques. NPJ Digit. Med. 2019, 2, 50. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wang, R.; Zee, P.; Lutsey, P.L.; Javaheri, S.; Alcántara, C.; Jackson, C.L.; Williams, M.A.; Redline, S. Racial/Ethnic Differences in Sleep Disturbances: The Multi-Ethnic Study of Atherosclerosis (MESA). Sleep 2015, 38, 877–888. [Google Scholar] [CrossRef] [PubMed]
- Herlan, A.; Ottenbacher, J.; Schneider, J.; Riemann, D.; Feige, B. Electrodermal activity patterns in sleep stages and their utility for sleep versus wake classification. J. Sleep Res. 2019, 28, e12694. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Qi, X.; Wang, H.; Liu, Z.; Wang, G.; Yan, X. A Multi-Class Automatic Sleep Staging Method Based on Long Short-Term Memory Network Using Single-Lead Electrocardiogram Signals. IEEE Access 2019, 7, 85959–85970. [Google Scholar] [CrossRef]
- An, P.; Si, W.; Ding, S.; Xue, G.; Yuan, Z. A novel EEG sleep staging method for wearable devices based on amplitude-time mapping. In Proceedings of the 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM), Toyonaka, Japan, 3–5 July 2019; pp. 124–129. [Google Scholar] [CrossRef]
- Shen, H.; Xu, M.; Guez, A.; Li, A.; Ran, F. An accurate sleep stages classification method based on state space model. IEEE Access 2019, 7, 125268–125279. [Google Scholar] [CrossRef]
- Cho, T.; Sunarya, U.; Yeo, M.; Hwang, B.; Koo, Y.S.; Park, C. Deep-ACTINet: End-to-end deep learning architecture for automatic sleep-wake detection using wrist actigraphy. Electronics 2019, 8, 1461. [Google Scholar] [CrossRef] [Green Version]
- Yi, R.; Enayati, M.; Keller, J.M.; Popescu, M.; Skubic, M. Non-invasive in-home sleep stage classification using a ballistocardiography bed sensor. In Proceedings of the 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Chicago, IL, USA, 19–22 May 2019; pp. 23–26. [Google Scholar] [CrossRef]
- Koushik, A.; Amores, J.; Maes, P. Real-time Smartphone-based Sleep Staging using 1-Channel EEG. In Proceedings of the 2019 IEEE 16th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Chicago, IL, USA, 19–22 May 2019; pp. 2–5. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Lan, K.; Liu, X.; Zhang, Z.; Li, P.; Cao, D.; Zheng, J.; Pan, J. Sleep stage classification using bidirectional lstm in wearable multi-sensor systems. arXiv 2019, arXiv:1909.11141. [Google Scholar]
- Walch, O.; Huang, Y.; Forger, D.; Goldstein, C. Sleep stage prediction with raw acceleration and photoplethysmography heart rate data derived from a consumer wearable device. Sleep 2019, 42, zsz180. [Google Scholar] [CrossRef]
- Apple. Apple Watch. Available online: https://www.apple.com/uk/watch/ (accessed on 21 January 2021).
- Haghayegh, S.; Khoshnevis, S.; Smolensky, M.H.; Diller, K.R.; Castriotta, R.J. Performance comparison of different interpretative algorithms utilized to derive sleep parameters from wrist actigraphy data. Chronobiol. Int. 2019, 36, 1752–1760. [Google Scholar] [CrossRef] [PubMed]
- Aerobtec. Motion Logger. Available online: https://aerobtec.com/motion-logger/ (accessed on 21 January 2021).
- Fedorin, I.; Slyusarenko, K.; Lee, W.; Sakhnenko, N. Sleep stages classification in a healthy people based on optical plethysmography and accelerometer signals via wearable devices. In Proceedings of the 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine, 2–6 July 2019; pp. 1201–1204. [Google Scholar] [CrossRef]
- Samsung. Smartwatches & Fitness Trackers. Available online: https://www.samsung.com/uk/watches/all-watches/ (accessed on 21 January 2021).
- Chang, S.; Wu, B.; Liou, Y.; Zheng, R.; Lee, P.; Chiueh, T.; Liu, T. An Ultra-Low-Power Dual-Mode Automatic Sleep Staging Processor Using Neural-Network-Based Decision Tree. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 3504–3516. [Google Scholar] [CrossRef]
- Mikkelsen, K.B.; Ebajemito, J.K.; Bonmati-Carrion, M.A.; Santhi, N.; Revell, V.L.; Atzori, G.; della Monica, C.; Debener, S.; Dijk, D.J.; Sterr, A.; et al. Machine-learning-derived sleep–wake staging from around-the-ear electroencephalogram outperforms manual scoring and actigraphy. J. Sleep Res. 2019, 28, e12786. [Google Scholar] [CrossRef]
- Miller, D.J.; Lastella, M.; Scanlan, A.T.; Bellenger, C.; Halson, S.L.; Roach, G.D.; Sargent, C. A validation study of the WHOOP strap against polysomnography to assess sleep. J. Sports Sci. 2020, 38, 2631–2636. [Google Scholar] [CrossRef] [PubMed]
- WHOOP. WHOOP Strap. Available online: https://www.whoop.com/ (accessed on 21 January 2021).
- Jørgensen, S.D.; Zibrandtsen, I.C.; Kjaer, T.W. Ear-EEG-based sleep scoring in epilepsy: A comparison with scalp-EEG. J. Sleep Res. 2019, 29, e12921. [Google Scholar] [CrossRef] [PubMed]
- Zaffaroni, A.; Coffey, S.; Dodd, S.; Kilroy, H.; Lyon, G.; O’Rourke, D.; Lederer, K.; Fietze, I.; Penzel, T. Sleep Staging Monitoring Based on Sonar Smartphone Technology. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 2230–2233. [Google Scholar] [CrossRef]
- Kalkbrenner, C.; Brucher, R.; Kesztyüs, T.; Eichenlaub, M.; Rottbauer, W.; Scharnbeck, D. Automated sleep stage classification based on tracheal body sound and actigraphy. Ger. Med. Sci. GMS e-J. 2019, 17. [Google Scholar] [CrossRef]
- Nakamura, T.; Alqurashi, Y.D.; Morrell, M.J.; Mandic, D.P. Hearables: Automatic Overnight Sleep Monitoring with Standardized In-Ear EEG Sensor. IEEE Trans. Biomed. Eng. 2020, 67, 203–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abou Jaoude, M.; Sun, H.; Pellerin, K.R.; Pavlova, M.; Sarkis, R.A.; Cash, S.S.; Westover, M.B.; Lam, A.D. Expert-level automated sleep staging of long-term scalp electroencephalography recordings using deep learning. Sleep 2020, 43, zsaa112. [Google Scholar] [CrossRef]
- Rosen, C.L.; Auckley, D.; Benca, R.; Foldvary-Schaefer, N.; Iber, C.; Kapur, V.; Rueschman, M.; Zee, P.; Redline, S. A Multisite Randomized Trial of Portable Sleep Studies and Positive Airway Pressure Autotitration Versus Laboratory-Based Polysomnography for the Diagnosis and Treatment of Obstructive Sleep Apnea: The HomePAP Study. Sleep 2012, 35, 757–767. [Google Scholar] [CrossRef]
- Xue, B.; Deng, B.; Hong, H.; Wang, Z.; Zhu, X.; Feng, D.D. Non-Contact Sleep Stage Detection Using Canonical Correlation Analysis of Respiratory Sound. IEEE J. Biomed. Health Inform. 2020, 24, 614–625. [Google Scholar] [CrossRef] [PubMed]
- Haghayegh, S.; Khoshnevis, S.; Smolensky, M.H.; Diller, K.R.; Castriotta, R.J. Performance assessment of new-generation Fitbit technology in deriving sleep parameters and stages. Chronobiol. Int. 2020, 37, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Lauteslager, T.; Kampakis, S.; Williams, A.J.; Maslik, M.; Siddiqui, F. Performance Evaluation of the Circadia Contactless Breathing Monitor and Sleep Analysis Algorithm for Sleep Stage Classification. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 5150–5153. [Google Scholar] [CrossRef]
- Circadia. C100 Contactless System. Available online: https://circadia.health/ (accessed on 21 January 2021).
- Cheung, J.; Leary, E.B.; Lu, H.; Zeitzer, J.M.; Mignot, E. PSG Validation of minute-to-minute scoring for sleep and wake periods in a consumer wearable device. PLoS ONE 2020, 15, e0238464. [Google Scholar] [CrossRef] [PubMed]
- Gasmi, A.; Augusto, V.; Beaudet, P.A.; Faucheu, J.; Morin, C.; Serpaggi, X.; Vassel, F. Sleep stages classification using cardio-respiratory variables. In Proceedings of the 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE), Hong Kong, China, 20–21 August 2020; pp. 1031–1036. [Google Scholar] [CrossRef]
- Kanady, J.C.; Ruoff, L.; Straus, L.D.; Varbel, J.; Metzler, T.; Richards, A.; Inslicht, S.S.; O’Donovan, A.; Hlavin, J.; Neylan, T.C. Validation of sleep measurement in a multisensor consumer grade wearable device in healthy young adults. J. Clin. Sleep Med. 2020, 16, 917–924. [Google Scholar] [CrossRef]
- Haghayegh, S.; Khoshnevis, S.; Smolensky, M.H.; Diller, K.R. Application of deep learning to improve sleep scoring of wrist actigraphy. Sleep Med. 2020, 74, 235–241. [Google Scholar] [CrossRef]
- Roberts, D.M.; Schade, M.M.; Mathew, G.M.; Gartenberg, D.; Buxton, O.M. Detecting sleep using heart rate and motion data from multisensor consumer-grade wearables, relative to wrist actigraphy and polysomnography. Sleep 2020, 43. [Google Scholar] [CrossRef]
- Oura. Oura Ring. Available online: https://ouraring.com/ (accessed on 21 January 2021).
- Korkalainen, H.; Aakko, J.; Duce, B.; Kainulainen, S.; Leino, A.; Nikkonen, S.; Afara, I.O.; Myllymaa, S.; Töyräs, J.; Leppänen, T. Deep learning enables sleep staging from photoplethysmogram for patients with suspected sleep apnea. Sleep 2020, 43, zsaa098. [Google Scholar] [CrossRef] [PubMed]
- Nonin. Xpod. Available online: https://www.nonin.com/products/xpod/ (accessed on 11 February 2021).
- Motin, M.; Karmakar, C.; Palaniswami, M.; Penzel, T. PPG based automated sleep-wake classification using support vector machine. Physiol. Meas. 2020, 41. [Google Scholar] [CrossRef]
- Fonseca, P.; van Gilst, M.M.; Radha, M.; Ross, M.; Moreau, A.; Cerny, A.; Anderer, P.; Long, X.; van Dijk, J.P.; Overeem, S. Automatic sleep staging using heart rate variability, body movements, and recurrent neural networks in a sleep disordered population. Sleep 2020, 43, zsaa048. [Google Scholar] [CrossRef] [PubMed]
- van Gilst, M.M.; van Dijk, J.P.; Krijn, R.; Hoondert, B.; Fonseca, P.; van Sloun, R.J.G.; Arsenali, B.; Vandenbussche, N.; Pillen, S.; Maass, H.; et al. Protocol of the SOMNIA project: An observational study to create a neurophysiological database for advanced clinical sleep monitoring. BMJ Open 2019, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Zhang, Y.; Jiang, F.; Zhao, H. A novel machine learning unsupervised algorithm for sleep/wake identification using actigraphy. Chronobiol. Int. 2020, 37, 1002–1015. [Google Scholar] [CrossRef]
- Sridhar, N.; Shoeb, A.; Stephens, P.; Kharbouch, A.; Shimol, D.; Burkart, J.; Ghoreyshi, A.; Myers, L. Deep learning for automated sleep staging using instantaneous heart rate. NPJ Digit. Med. 2020, 3, 106. [Google Scholar] [CrossRef]
- Kuula, L.; Pesonen, A.K. Heart Rate Variability and Firstbeat Method for Detecting Sleep Stages in Healthy Young Adults: Feasibility Study. JMIR Mhealth Uhealth 2021, 9, e24704. [Google Scholar] [CrossRef]
- Firstbeat Technologies, Oy. Firstbeat Bodyguard. Available online: https://www.firstbeat.com/en/ (accessed on 11 February 2021).
- Devine, J.K.; Chinoy, E.D.; Markwald, R.R.; Schwartz, L.P.; Hursh, S.R. Validation of Zulu Watch against Polysomnography and Actigraphy for On-Wrist Sleep-Wake Determination and Sleep-Depth Estimation. Sensors 2021, 21, 76. [Google Scholar] [CrossRef] [PubMed]
- Scott, H.; Lovato, N.; Lack, L. The Development and Accuracy of the THIM Wearable Device for Estimating Sleep and Wakefulness. Nat. Sci. Sleep 2021, 13, 39–53. [Google Scholar] [CrossRef]
- Re-Time Pty Ltd. THIM. Available online: https://thim.io/ (accessed on 11 February 2021).
- Griessenberger, H.; Heib, D.; Kunz, A.; Hoedlmoser, K.; Schabus, M. Assessment of a wireless headband for automatic sleep scoring. Sleep Breath. 2012, 17, 747–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myllymaa, S.; Muraja-Murro, A.; Westeren-Punnonen, S.; Hukkanen, T.; Lappalainen, R.; Mervaala, E.; Töyräs, J.; Sipilä, K.; Myllymaa, K. Assessment of the suitability of using a forehead EEG electrode set and chin EMG electrodes for sleep staging in polysomnography. J. Sleep Res. 2016, 25, 636–645. [Google Scholar] [CrossRef] [PubMed]
- Casson, A.J.; Smith, S.; Duncan, J.S.; Rodriguez-Villegas, E. Wearable EEG: What is it, why is it needed and what does it entail? In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 5867–5870. [Google Scholar] [CrossRef]
- Ako, M.; Kawara, T.; Uchida, S.; Miyazaki, S.; Nishihara, K.; Mukai, J.; Hirao, K.; Ako, J.; Okubo, Y. Correlation between electroencephalography and heart rate variability during sleep. Psychiatry Clin. Neurosci. 2003, 57, 59–65. [Google Scholar] [CrossRef]
- Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1–R39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haghayegh, S.; Khoshnevis, S.; Smolensky, M.H.; Diller, K.R.; Castriotta, R.J. Accuracy of Wristband Fitbit Models in Assessing Sleep: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2019, 21, e16273. [Google Scholar] [CrossRef] [PubMed]
- Penzel, T.; Kantelhardt, J.; Lo, C.C.; Voigt, K.; Vogelmeier, C. Dynamics of Heart Rate and Sleep Stages in Normals and Patients with Sleep Apnea. Neuropsychopharmacology 2003, 28 (Suppl. 1), S48–S53. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, G.; Williams, J.; Alrehaili, G.A.; McLean, A.; Pirouz, R.; Amdur, R.; Jain, V.; Ahari, J.; Bawa, A.; Kimbro, S. Respiratory rate variability in sleeping adults without obstructive sleep apnea. Physiol. Rep. 2016, 4, e12949. [Google Scholar] [CrossRef]
- Hakim, A. Wrist Actigraphy. Chest 2011, 139, 1514–1527. [Google Scholar] [CrossRef]
- Kaplan, V.; Zhang, J.; Russi, E.; Bloch, K. Detection of inspiratory flow limitation during sleep by computer assisted respiratory inductive plethysmography. Eur. Respir. J. 2000, 15, 570–578. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.Y.; Huang, C.C.; Chen, C.C.; Chang, C.C.; Yang, C.L. Design of a Novel Flexible Capacitive Sensing Mattress for Monitoring Sleeping Respiratory. Sensors 2014, 14, 22021–22038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.W.; Das, P.S.; Chhetry, A.; Park, J.Y. A Flexible Capacitive Pressure Sensor for Wearable Respiration Monitoring System. IEEE Sens. J. 2017, 17, 6558–6564. [Google Scholar] [CrossRef]
- Costanzo, S. Software-Defined Doppler Radar Sensor for Human Breathing Detection. Sensors 2019, 19, 3085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dafna, E.; Rosenwein, T.; Tarasiuk, A.; Zigel, Y. Breathing rate estimation during sleep using audio signal analysis. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 5981–5984. [Google Scholar] [CrossRef]
- Mcnicholas, W.T.; Coffey, M.; Boyle, T. Effects of Nasal Airflow on Breathing during Sleep in Normal Humans. Am. Rev. Respir. Dis. 1993, 147, 620–623. [Google Scholar] [CrossRef] [PubMed]
- Sano, A.; Picard, R.W.; Stickgold, R. Quantitative analysis of wrist electrodermal activity during sleep. Int. J. Psychophysiol. 2014, 94, 382–389. [Google Scholar] [CrossRef]
- Morgenthaler, T.; Alessi, C.; Friedman, L.; Owens, J.; Kapur, V.; Boehlecke, B.; Brown, T.; Coleman, J.; Lee-Chiong, T.; Pancer, J.; et al. Practice Parameters for the Use of Actigraphy in the Assessment of Sleep and Sleep Disorders: An Update for 2007. Sleep 2007, 30, 519–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.W.; Lee, K.; Yeom, J.; Lee, T.H.; Kim, D.H.; Kim, J.J. Wearable Multi-Biosignal Analysis Integrated Interface with Direct Sleep-Stage Classification. IEEE Access 2020, 8, 46131–46140. [Google Scholar] [CrossRef]
- Estrada, E.; Nazeran, H.; Barragan, J.; Burk, J.R.; Lucas, E.A.; Behbehani, K. EOG and EMG: Two Important Switches in Automatic Sleep Stage Classification. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 2458–2461. [Google Scholar] [CrossRef]
- Imtiaz, S.A.; Rodriguez-Villegas, E. Recommendations for performance assessment of automatic sleep staging algorithms. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 5044–5047. [Google Scholar] [CrossRef] [Green Version]
- Svensson, T.; il Chung, U.; Tokuno, S.; Nakamura, M.; Svensson, A.K. A validation study of a consumer wearable sleep tracker compared to a portable EEG system in naturalistic conditions. J. Psychosom. Res. 2019, 126, 109822. [Google Scholar] [CrossRef]
- Rapoport, D.M. Non-Contact Sleep Monitoring: Are We There Yet? J. Clin. Sleep Med. 2019, 15, 935–936. [Google Scholar] [CrossRef] [PubMed]
- Danzig, R.; Wang, M.; Shah, A.; Trotti, L.M. The wrist is not the brain: Estimation of sleep by clinical and consumer wearable actigraphy devices is impacted by multiple patient- and device-specific factors. J. Sleep Res. 2020, 29, e12926. [Google Scholar] [CrossRef] [PubMed]
- Moon, N.W.; Baker, P.M.; Goughnour, K. Designing wearable technologies for users with disabilities: Accessibility, usability, and connectivity factors. J. Rehabil. Assist. Technol. Eng. 2019, 6, 2055668319862137. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Xian, D.; Liu, X.; Fu, J.; Zhang, X.; Tang, B.; Lei, J. Usability Study of Mainstream Wearable Fitness Devices: Feature Analysis and System Usability Scale Evaluation. JMIR Mhealth Uhealth 2018, 6, e11066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Villegas, E.; Iranmanesh, S.; Imtiaz, S.A. Wearable Medical Devices: High-Level System Design Considerations and Tradeoffs. IEEE Solid-State Circuits Mag. 2018, 10, 43–52. [Google Scholar] [CrossRef]
- Walker, M. Why We Sleep: Unlocking the Power of Sleep and Dreams; Scribner: New York, NY, USA, 2017. [Google Scholar]
- Blanco-Almazán, D.; Groenendaal, W.; Catthoor, F.; Jané, R. Wearable Bioimpedance Measurement for Respiratory Monitoring During Inspiratory Loading. IEEE Access 2019, 7, 89487–89496. [Google Scholar] [CrossRef]
- Elfaramawy, T.; Fall, C.L.; Arab, S.; Morissette, M.; Lellouche, F.; Gosselin, B. A Wireless Respiratory Monitoring System Using a Wearable Patch Sensor Network. IEEE Sens. J. 2019, 19, 650–657. [Google Scholar] [CrossRef]
- Sharma, P.; Imtiaz, A.; Rodriguez-Villegas, E. Acoustic Sensing as a Novel Wearable Approach for Cardiac Monitoring at the Wrist. Sci. Rep. 2019, 9, 20079. [Google Scholar] [CrossRef]
- Lo Presti, D.; Massaroni, C.; D’Abbraccio, J.; Massari, L.; Caponero, M.; Longo, U.G.; Formica, D.; Oddo, C.M.; Schena, E. Wearable System Based on Flexible FBG for Respiratory and Cardiac Monitoring. IEEE Sens. J. 2019, 19, 7391–7398. [Google Scholar] [CrossRef]
- van Gilst, M.M.; Wulterkens, B.M.; Fonseca, P.; Radha, M.; Ross, M.; Moreau, A.; Cerny, A.; Anderer, P.; Long, X.; van Dijk, J.P.; et al. Direct application of an ECG-based sleep staging algorithm on reflective photoplethysmography data decreases performance. BMC Res. Notes 2020, 13. [Google Scholar] [CrossRef]
- Chriskos, P.; Frantzidis, C.A.; Nday, C.M.; Gkivogkli, P.T.; Bamidis, P.D.; Kourtidou-Papadeli, C. A review on current trends in automatic sleep staging through bio-signal recordings and future challenges. Sleep Med. Rev. 2021, 55, 101377. [Google Scholar] [CrossRef]
- de Zambotti, M.; Cellini, N.; Goldstone, A.; Colrain, I.M.; Baker, F.C. Wearable Sleep Technology in Clinical and Research Settings. Med. Sci. Sport. Exerc. 2019, 51, 1538–1557. [Google Scholar] [CrossRef]
- Casson, A. Wearable EEG and beyond. Biomed. Eng. Lett. 2019, 9, 53–71. [Google Scholar] [CrossRef] [PubMed]
Ref | Sensing Modality | Signals/Features | Sleep Stages Classified | Accuracy | Kappa | Validation | Subjects | Age | Location | Data Source |
---|---|---|---|---|---|---|---|---|---|---|
[13] | Pressure sensors | HBI + Movement | Wake-NREM-REM | 79% | 0.44 | PSG | 9 | 20–54 | Hospital | Emfit [14] |
[15] | ACC + PPG | HR + Movement | Wake-REM-Light-Deep | 65.3% | 0.48 | PSG | 227 | 36–63 | Sleep Lab | WatchPAT 100 [16] |
[17] | RIP + Nasal airflow | Respiratory effort | Wake-NREM-REM | 70% | - | PSG | 16 | 32–56 | Hospital | MIT-BIH [18] |
[19] | ACC | Movement | Wake-Sleep | 86.2% | 0.65 | PSG | 30 | 17-24 | Research Lab | Actiwatch-64 [20] |
[21] | EEG | 1 channel | Wake-REM-Light-Deep | 81.1% | 0.7 | PSG | 26 | 19–60 | Sleep Lab | Zeo |
[22] | PPG + ACC | HRV + Movement | Wake-NREM-REM | 75% | - | PSG | 48 | 22–71 | Hospital | Research Device |
[23] | ECG | HRV | Wake-NREM-REM | 73.50% | - | PSG | 7 (OSA) | 42–68 | Hospital | Unknown |
[24] | ACC | Hip Movement | Wake-N1-N2-N3-REM | 88.4% | - | PSG | 34 | 20–24 | Sleep Lab | FS-750 |
[25] | ACC | Movement | Wake-Sleep | 88.0% | 0.3 | PSG | 22 | 20-28 | Sleep Lab | Actiwatch-64 [20] |
[26] | RIP + ACC | Effort + Movement | Wake-Sleep | 95.7% | 0.66 | PSG | 15 | 23–58 | Sleep Lab | Actiwatch [20] |
[27] | RIP + ECG + ACC | RRI + Movement | Wake-NREM-REM | 78.3% | 0.58 | PSG | 20 | 32–52 | Sleep Lab | ACT/Somnowatch [28] |
[29] | EEG | 1 channel | NREM-REM | 83% | 0.61 | PSG | 20 | 20–65 | Hospital | DREAMS [30] |
[31] | EEG | 1 channel | Wake-N1 | 92.50% | 0.63 | PSG | 13 | - | Hospital | Sleep EDF Expanded [32] |
[33] | PPG | PRV | Wake-NREM-REM | 77–80% | - | PSG | 146 (SDB) | 9–14 | Hospital | Unknown |
[34] | Pressure sensors | RR + Movement | Wake-NREM-REM | 70.30% | 0.45 | PSG | 7 | 21–60 | - | Research Device |
[35] | ACC | Hip Movement | Wake-Sleep | 86.2% | - | PSG | 108 | 21–24 | Research Lab | GT3X+ [36] |
[37] | ACC + EEG | Movement + 1 channel | Wake-REM-Light-Deep | 74.2% | - | PSG | 30 | 18–80 | Sleep Lab | SomnoScreen [38] |
[39] | EEG + RIP | Respiratory effort | Wake-N1-N2-N3-REM | 81.70% | - | PSG | - | - | Hospital | Unknown |
[40] | ECG | HR | Wake-REM-Light-Deep | 76–85% | - | PSG | 15 | 28–39 | Hospital | CAP Sleep Database [41] |
[42] | EEG | 1 channel | Wake-N1-N2-N3-REM | 79% | 0.69 | PSG | 39 | 25–101 | Hospital | Sleep EDF Expanded [32] |
[43] | EEG | 1 channel | Wake-REM-Light-Deep | - | 0.72 | PSG | 99 | 18–60 | Sleep Lab | Zmachine [44] |
[45] | EEG | 1 channel | Wake-N1-N2-N3-REM | 86.20% | 0.78 | PSG | 8 | 21–35 | Hospital | Sleep EDF Database [32] |
[46] | Radar sensors | Respiratory movement | Wake-NREM-REM | 75% | 0.56 | PSG | 29 (SDB) | 22–67 | Hospital | Research Device |
[47] | RIP | Respiratory effort | Wake-NREM-REM | 80% | 0.65 | PSG | 29 (SDB) | 22–67 | Hospital | Embla N7000 [48] |
[49] | Radar sensors | RR + Movement | REM-Light-Deep | 79.30% | - | PSG | 11 | 21–23 | Research Lab | Research Device |
[50] | EEG + EOG + EMG | Ear-EEG | Wake-N1-N2-N3-REM | 95% | - | PSG | 8 | avg. 25 | Sleep Lab | Research Device |
[51] | Radar sensors | HRV + Movement | Wake-Sleep | 66.4% | - | PSG | 10 | 21–24 | Research Lab | Research Device |
[52] | ECG | RRI | NREM-REM | 76.20% | 0.52 | PSG | 20 | 22–33 | Hospital | MASS PSG Database [53] |
[54] | ECG + PPG | HR + Oximetry | Wake-Sleep | 83.80% | - | PSG | 100 | - | Home | SHHS Database [55] |
[56] | Audio | Respiratory features | Wake-NREM-REM | 75% | 0.42 | PSG | 20 | 23–70 | Hospital | EDIROL R-4 [57] |
[58] | ECG + PPG | HRV + PTT | Wake-N1-N2-N3-REM | 73.40% | - | PSG | 20 (Insomnia) | - | Hospital | SOMNOScreen [38] |
[59] | Nasal airflow | RR | Wake-NREM-REM | 74% | 0.49 | PSG | 20 | 25–34 | Hospital | Sleep EDF Expanded [32] |
[60] | EEG | 1 channel | Wake-N1-(N2+N3)-REM | 90% | 0.67 | PSG | 29 | - | Research Lab | Sleep Profiler [61] |
[62] | ACC | Movement | Wake-Sleep | - | - | PSG | 14 | 3–11 | Hospital | Fitbit Flex [63] |
[64] | ACC + PPG | HR + Movement | Wake-Sleep | 90.90% | - | PSG | 32 | 14–20 | Sleep Lab | Fitbit ChargeHR [63] |
[65] | EEG | Ear-EEG | Wake-N1-N2-N3 | 76.80% | 0.64 | EEG | 4 | 25–36 | Research Lab | Research Device |
[66] | ECG + RIP | RRI + Respiratory effort | Wake-REM-Light-Deep | 87.40% | 0.41 | PSG | 180 | 20–95 | Hospital | Multiple Databases |
[67] | EEG | 1 channel | Wake-S1-S2-S3-S4-REM | 90.5% | 0.8 | PSG | 20 | 25–34 | Hospital | Sleep EDF Expanded |
[68] | PPG + ACC | HRV + Movement | Wake-REM-Light-Deep | 69% | 0.52 | PSG | 60 | 24–44 | Home | Fitbit Surge [63] |
[69] | ECG + ACC | HR + Movement | Wake-NREM-REM | 75% | 0.49 | PSG | 289 (Various) | 37–65 | Hospital | Unknown |
[70] | PPG | HRV | Wake-Sleep | 80.10% | - | PSG | - | - | Hospital | Multiple Databases |
[71] | ACC + PPG | HRV + Movement | Wake-N1-(N2+N3)-REM | 59.3% | 0.42 | PSG | 51 | 41–60 | Home | Alice PDx |
[72] | EEG | 1 channel | Wake-N1-N2-N3-REM | 79% | 0.59 | PSG | 20 | 20–65 | Hospital | DREAMS Subjects [30] |
[73] | EEG | 1 channel | Wake-NREM-REM | 77% | 0.56 | PSG | 16 | 32–56 | Hospital | MIT-BIH [18] |
[74] | Pressure sensors | HR + RR + Movement | Wake-REM-Light-Deep | 64% | 0.46 | PSG | 66 | 17–72 | Sleep Lab/Home | EarlySense [75] |
[76] | EEG | 2 channels | Wake-N1-N2-N3-REM | 94% | - | PSG | 20 | 25–34 | Hospital | Sleep EDF Expanded [32] |
[77] | ECG | HRV + EDR | Wake-REM-Light-Deep | 75.4% | 0.54 | PSG | 16 | 32–56 | Hospital | MIT-BIH [18] |
[78] | PPG + ACC | HRV + Movement | Wake-REM-Light-Deep | 49–81% | - | PSG | 44 (PLMS) | 19–61 | Sleep Lab | Fitbit Charge 2 [63] |
[79] | ECG | HRV | Wake-REM-Light-Deep | 89.20% | - | PSG | 3295 | - | Home | SHHS Database [55] |
[80] | PPG + ACC | HR + Movement | Wake-N1-N2-N3-REM | 66.60% | - | PSG | 39 | 19–64 | Hospital | Microsoft Band I |
[81] | ACC | Movement | Wake-Sleep | 85.0% | - | PSG | 22 | 20–45 | Home | GT3X+ [36] |
[82] | ECG | HRV | Wake-REM-Light-Deep | 71.50% | - | PSG | 16 | 32–56 | Hospital | MIT-BIH [18] |
[83] | ECG | RRI | N3 | 90% | 0.56 | PSG | 45 (OSA) | - | Hospital | NI DAQ 6221 |
[84] | ACC | Movement | Wake-Sleep | 91% | 0.67 | PSG | 27 | 18–64 | Sleep Lab | myCadian |
[85] | ACC | Movement | Wake-Sleep | 83% | - | PSG | 1817 | - | Sleep Lab | MESA Sleep Dataset [86] |
[87] | EDA | - | Wake-Sleep | 86.0% | - | PSG | 91 | - | Hospital | Research Device |
[88] | ECG | HRV + RRV | Wake-N1-N2-N3-REM | 71.16% | 0.52 | PSG | 373 (Various) | 22–56 | Hospital | SOLAR 3000B |
[89] | EEG | 1 channel | Wake-S1-S2-S3-S4-REM | 93.60% | 0.87 | PSG | 4 | - | Hospital | Sleep EDF Expanded [32] |
[90] | EEG | 1 channel | Wake-N1-N2-N3-REM | 81–92% | 0.89 | PSG | 48 | 20–65 | Hospital | Sleep EDF + DREAMS [30,32] |
[91] | ACC | Movement | Wake-Sleep | 89.65% | - | Sleep Diary | 10 | - | Home | GT3X [36] |
[92] | Pressure sensors | HRV + RRV | Wake-NREM-REM | 85% | 0.74 | PSG | 5 | 63–69 | Sleep Lab | Research Device |
[93] | EEG | 1 channel | Wake-N1-N2-N3-REM | 83.50% | - | PSG | 20 | - | Hospital | Sleep EDF Database [32] |
[94] | ECG + ACC + PPG | RRI + HRV + Movement | Wake-REM-Light-Deep | 81% | 0.69 | PSG | 32 | 22–45 | Hospital | SensEcho |
[95] | PPG + ACC | HR + Movement | Wake-NREM-REM | 72% | 0.27 | PSG | 31 | 19–55 | Hospital | Apple Watch (2,3) [96] |
[97] | ACC | Movement | Wake-Sleep | 85.4% | 0.54 | EEG | 40 | 18–40 | Home | Motion Logger [98] |
[99] | PPG + ACC | HRV + RR + Movement | Wake-REM-Light-Deep | 77% | 0.67 | PSG | 50 | - | - | Samsung Smartwatch [100] |
[101] | EEG + EMG | 1 channel + chin movement | Wake-N1-N2-N3-REM | 81% | - | PSG | 49 | 36–52 | Sleep Lab | NTHU Database |
[102] | EEG | Ear-EEG | Wake-N1-N2-N3-REM | 72.0% | 0.59 | PSG | 15 | 18–63 | Research Lab | Research Device |
[103] | PPG + ACC | HR + Movement | Wake-REM-Light-Deep | 64% | 0.47 | PSG | 12 | 19–27 | Research Lab | WHOOP strap [104] |
[105] | EEG | Ear-EEG | Wake-N1-N2-N3-REM | 81% | 0.74 | PSG | 13 | 18–60 | Hospital | Research Device |
[106] | Sonar | RR + Movement | Wake-REM-Light-Deep | 60% | 0.39 | PSG | 62 | 31–63 | Sleep Lab | Smartphone |
[107] | Audio + ACC | RR + HRV + Movement | Wake-REM-Light-Deep | 57% | 0.36 | PSG | 53 (OSA) | 43–72 | Hospital | Research Device |
[108] | EEG | Ear-EEG | Wake-N1-N2-N3-REM | 74.10% | 0.61 | PSG | 22 | 19–29 | Home | Research Device |
[109] | EEG | 4 channels | Wake-N1-N2-N3-REM | 77.3% | 0.69 | PSG | 243 | >18 | Hospital | HomePAP Database [110] |
[111] | Audio | Breathing/snoring sounds | Wake-NREM-REM | 75% | 0.42 | PSG | 13 | 21–26 | Sleep Lab | Research Device |
[112] | PPG + ACC | HRV + Movement | Wake-REM-Light-Deep | 65–89% | 0.54 | EEG | 35 | 14–40 | Home | Fitbit Charge 2 [63] |
[113] | Radar sensors | Respiratory movements | Wake-REM-Light-Deep | 62.70% | 0.46 | PSG | 9 | 23–27 | Home | Circadia C100 [114] |
[115] | ACC | Movement | Wake-Sleep | 90.30% | 0.54 | PSG | 41 | >13 | Sleep Lab | Arc |
[116] | ECG | RRI + RR | Wake-NREM-REM | 76.50% | 0.49 | PSG | 25 (SDB) | >18 | Hospital | Unknown |
[117] | PPG + ACC | HR + Movement | Wake-N1-N2-N3-REM | 54.20% | - | PSG | 18 | - | Sleep Lab | Basis B1 |
[118] | ACC | Movement | Wake-Sleep | 87.70% | 0.6 | EEG | 40 | avg. 26.7 | Home | Motion Logger [98] |
[119] | ACC + PPG | HR + Movement | Wake-Sleep | 89.90% | 0.42 | PSG | 8 | 35–50 | Sleep Lab | Apple Watch + Oura [96,120] |
[121] | PPG | Oximetry | Wake-N1-N2-N3-REM | 64.1% | 0.51 | PSG | 894 (OSA) | 44–66 | Hospital | Xpod 3011 [122] |
[123] | PPG | PPI | Wake-Sleep | 81.10% | 0.52 | PSG | 10 (SDB) | 43–75 | Hospital | Unknown |
[124] | ECG + ACC | HRV + Movement | Wake-N1-(N2+N3)-REM | 75.9% | 0.6 | PSG | 389 (Multiple) | - | Hospital | SOMNIA Dataset [125] |
[126] | ACC | Movement | Wake-Sleep | 84.7% | 0.45 | PSG | 43 | 45–84 | Sleep Lab | MESA Sleep Dataset [86] |
[127] | ECG | HR | Wake-REM-Light-Deep | 77% | 0.66 | PSG | - | - | Sleep Lab | MESA Sleep + SHHS [55,86] |
[128] | ECG + ACC | HRV + Movement | Wake-REM-Light-Deep | 66.9% | 0.51 | PSG | 20 | 20–37 | Home | Firstbeat [129] |
[130] | ACC | Movement | Wake-Sleep | 90.3% | - | PSG | 8 | 18–35 | Research Lab | Zulu Watch |
[131] | ACC | Finger Movement | Wake-Sleep | 85.0% | - | PSG | 25 | - | Sleep Lab | THIM [132] |
Sensing Modality | As Single Source | In Combination |
---|---|---|
EEG | 19 | 4 |
ECG | 10 | 8 |
EMG | 0 | 2 |
EOG | 0 | 1 |
Accelerometer | 15 | 21 |
RIP | 1 | 3 |
Radar sensors | 4 | 0 |
Pressure sensors | 4 | 0 |
Audio | 2 | 1 |
PPG | 4 | 16 |
Nasal airflow | 1 | 1 |
Sonar sensors | 1 | 0 |
EDA | 1 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imtiaz, S.A. A Systematic Review of Sensing Technologies for Wearable Sleep Staging. Sensors 2021, 21, 1562. https://doi.org/10.3390/s21051562
Imtiaz SA. A Systematic Review of Sensing Technologies for Wearable Sleep Staging. Sensors. 2021; 21(5):1562. https://doi.org/10.3390/s21051562
Chicago/Turabian StyleImtiaz, Syed Anas. 2021. "A Systematic Review of Sensing Technologies for Wearable Sleep Staging" Sensors 21, no. 5: 1562. https://doi.org/10.3390/s21051562
APA StyleImtiaz, S. A. (2021). A Systematic Review of Sensing Technologies for Wearable Sleep Staging. Sensors, 21(5), 1562. https://doi.org/10.3390/s21051562