A Video-Based Technique for Heart Rate and Eye Blinks Rate Estimation: A Potential Solution for Telemonitoring and Remote Healthcare
Abstract
:1. Introduction
- Is the considered video-based technique reliable in terms of HR and EBR estimation?
- Is the considered video-based technique capable of discriminating between a nominal and a non-nominal state of the patient?
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol
- The n-Back (NB) task. A well-known computer-based psychological test used to manipulate workload, or more specifically working memory load [37]. Within this task a sequence of stimuli is presented to the user. The goal is to indicate when the current stimulus matches the stimulus that occurred in the series n steps before. The factor n can be adjusted to make the task more difficult or easier. A baseline and three conditions (0-back, 2-back, and 2-back stressful) of such task were tested in the proposed study, all of them with different levels of difficulty. In all conditions, 21 uppercase letters were used, which were displayed for 500 ms and an inter-stimulus interval randomized between 500 to 3000 ms; 33% of the displayed letters were target. During the baseline (1 min duration), the same 21 uppercase letters was presented to the participants with no interaction required.
- The Doctor Game (DG). The aim of the game was to remove small objects from the board without touching the edges. Here, a baseline and three difficulty levels were tested too.
- Two interactive web calls (WEB) were performed. Three conditions of such task were performed: (i) Baseline condition, in which the participants looked at the web platform interface without reacting; (ii) Positive condition, in which the test persons were asked to report the happiest memory of their life; (iii) Negative condition, in which the test persons were asked to report the saddest memory of their life.
2.3. Questionnaires
- Self-assessment Manikin (SAM), consisting in a picture-oriented questionnaire [38] developed to measure the valence/pleasure of the response (from positive to negative), perceived arousal (from high to low levels), and perceptions of dominance/control (from low to high levels) associated with a person’s affective reaction to a wide variety of stimuli. After each experimental condition the participants were asked to provide only three simple judgments along each affective dimension (on a scale from 1 to 9) that best described how they felt during the condition just executed. This questionnaire was selected to have a subjective indication about the current state of the participants in terms of pleasure, arousal and control with the respect of each experimental condition of WEB task.
- NASA Task Load Index (NASA-TLX), consisting of six sub-scales representing independent groups of variables: mental, physical and temporal demands, frustration, effort and performance. The participants were initially asked to rate on a scale from “low” to “high” (from 0 to 100) each of the six dimensions during the task. Afterwards, they had to choose the most important factor along pairwise comparisons [39]. The NASA-TLX was selected for subjectively quantify the mental demand perceived by the participants with the respect of the experimental condition of the DG and NB tasks.
2.4. Eye Blinks Signal Recording and Analysis
- (i)
- Threshold calculation
- (ii)
- Pattern Matching.
2.5. ECG Signal Recording and Analysis
2.6. Statistical Analysis
3. Results
3.1. Methodology Comparison
3.2. Mental States Discrimination
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bashshur, R.L.; Shannon, G.W.; Smith, B.R.; Woodward, M.A. The Empirical Evidence for the Telemedicine Intervention in Diabetes Management. Telemed. Health 2015, 21, 321–354. [Google Scholar] [CrossRef] [PubMed]
- Portnoy, J.M.; Waller, M.; De Lurgio, S.; Dinakar, C. Telemedicine is as effective as in-person visits for patients with asthma. Ann. Allergy Asthma Immunol. 2016, 117, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Perry, T.T.; Turner, J.H. School-Based Telemedicine for Asthma Management. J. Allergy Clin. Immunol. Pract. 2019, 7, 2524–2532. [Google Scholar] [CrossRef]
- Kruse, C.S.; Soma, M.; Pulluri, D.; Nemali, N.T.; Brooks, M. The effectiveness of telemedicine in the management of chronic heart disease–a systematic review. JRSM Open 2017, 8, 174. [Google Scholar] [CrossRef] [Green Version]
- Ambrosino, N.; Vagheggini, G.; Mazzoleni, S.; Vitacca, M. Telemedicine in chronic obstructive pulmonary disease. Breathe 2016, 12, 350–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaziri, K.; Moshfeghi, D.M.; Moshfeghi, A.A. Feasibility of Telemedicine in Detecting Diabetic Retinopathy and Age-Related Macular Degeneration. Semin. Ophthalmol. 2013, 30, 81–95. [Google Scholar] [CrossRef]
- Miele, G.; Straccia, G.; Moccia, M.; Leocani, L.; Tedeschi, G.; Bonavita, S.; Lavorgna, L.; Padovani, A.; Clerico, M.; Brigo, F.; et al. Telemedicine in Parkinson’s Disease: How to Ensure Patient Needs and Continuity of Care at the Time of COVID-19 Pandemic. Telemed. Health 2020, 26, 1533–1536. [Google Scholar] [CrossRef] [PubMed]
- Armaignac, D.L.; Saxena, A.; Rubens, M.; Valle, C.A.; Williams, L.M.; Veledar, E.; Gidel, L.T. Impact of telemedicine on mortality, length of stay, and cost among patients in progressive care units: Experience from a large healthcare system. Crit. Care Med. 2018, 46, 728–735. [Google Scholar] [CrossRef] [Green Version]
- Nates, J.L.; Nunnally, M.; Kleinpell, R.; Blosser, S.; Goldner, J.; Birriel, B.; Fowler, C.S.; Byrum, D.; Miles, W.S.; Bailey, H.; et al. ICU Admission, Discharge, and Triage Guidelines. Crit. Care Med. 2016, 44, 1553–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prin, M.; Wunsch, H. The Role of Stepdown Beds in Hospital Care. Am. J. Respir. Crit. Care Med. 2014, 190, 1210–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, Y. A Call for Addressing Barriers to Telemedicine: Health Disparities during the COVID-19 Pandemic. Psychother. Psychosom. 2021, 90, 64–66. [Google Scholar] [CrossRef]
- Baker, J.; Stanley, A. Telemedicine Technology: A Review of Services, Equipment, and Other Aspects. Curr. Allergy Asthma Rep. 2018, 18, 60. [Google Scholar] [CrossRef] [PubMed]
- Aldossary, S.; Martin-Khan, M.G.; Bradford, N.K.; Smith, A.C. A systematic review of the methodologies used to evaluate telemedicine service initiatives in hospital facilities. Int. J. Med. Inform. 2017, 97, 171–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbone, M.; Freschi, C.; Mascioli, S.; Ferrari, V.; Ferrari, M. A Wearable Augmented Reality Platform for Telemedicine. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Otranto, Italy, 2016; Volume 9769, pp. 92–100. [Google Scholar]
- Fan, Y.; Xu, P.; Jin, H.; Ma, J.; Qin, L. Vital Sign Measurement in Telemedicine Rehabilitation Based on Intelligent Wearable Medical Devices. IEEE Access 2019, 7, 54819–54823. [Google Scholar] [CrossRef]
- Tartan, E.Ö.; Çiflikli, C. An Android Application for Geolocation Based Health Monitoring, Consultancy and Alarm System. In Proceedings of the 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Tokyo, Japan, 23–27 July 2018; Volume 2, pp. 341–344. [Google Scholar]
- Albahri, A.S.; Alwan, J.K.; Taha, Z.K.; Ismail, S.F.; Hamid, R.A.; Zaidan, A.A.; Albahri, O.S.; Zaidan, B.B.; Alamoodi, A.H.; Alsalem, M.A. IoT-based telemedicine for disease prevention and health promotion: State-of-the-Art. J. Netw. Comput. Appl. 2021, 173, 102873. [Google Scholar] [CrossRef]
- Lilly, C.M.; Cody, S.; Zhao, H.; Landry, K.; Baker, S.P.; McIlwaine, J.; Chandler, M.W.; Irwin, R.S. For the University of Massachusetts Memorial Critical Care Operations Group Hospital Mortality, Length of Stay, and Preventable Complications Among Critically Ill Patients Before and After Tele-ICU Reengineering of Critical Care Processes. JAMA 2011, 305, 2175–2183. [Google Scholar] [CrossRef]
- Driessen, J.; Bonhomme, A.; Chang, W.; Nace, D.A.; Kavalieratos, D.; Perera, S.; Handler, S.M. Nursing Home Provider Perceptions of Telemedicine for Reducing Potentially Avoidable Hospitalizations. J. Am. Med. Dir. Assoc. 2016, 17, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Delliaux, S.; Delaforge, A.; Deharo, J.-C.; Chaumet, G. Mental Workload Alters Heart Rate Variability, Lowering Non-linear Dynamics. Front. Physiol. 2019, 10, 565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borghini, G.; Arico, P.; Di Flumeri, G.; Sciaraffa, N.; Ronca, V.; Vozzi, A.; Babiloni, F. Assessment of Athletes’ Attitude: Physiological Evaluation via Wearable Sensors during Grappling Competitions. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montréal, QC, Canada, 20–24 July 2020; Volume 2020, pp. 584–587. [Google Scholar]
- Ronca, V.; Rossi, D.; Di Florio, A.; Di Flumeri, G.; Aricò, P.; Sciaraffa, N.; Vozzi, A.; Babiloni, F.; Borghini, G. Contactless Physiological Assessment of Mental Workload During Teleworking-like Task. In Communications in Computer and Information Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 1318, pp. 76–86. [Google Scholar]
- Ahlstrom, U.; Friedman-Berg, F.J. Using eye movement activity as a correlate of cognitive workload. Int. J. Ind. Ergon. 2006, 36, 623–636. [Google Scholar] [CrossRef]
- Boehm-Davis, D.A.; Gray, W.D.; Schoelles, M.J. The Eye Blink as a Physiological Indicator of Cognitive Workload. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Los Angeles, CA, USA, 30 July–4 August 2000; pp. 6–116. [Google Scholar] [CrossRef]
- Rahman, H.; Ahmed, M.U.; Begum, S.; Funk, P. Real Time Heart Rate Monitoring From Facial RGB Color Video Using Webcam. In Proceedings of the The 29th Annual Workshop of the Swedish Artificial Intelligence Society (SAIS 2016), Malmö, Sweden, 2–3 June 2016. [Google Scholar]
- Rahman, H.; Ahmed, M.U.; Begum, S. Non-Contact Physiological Parameters Extraction Using Facial Video Considering Illumination, Motion, Movement and Vibration. IEEE Trans. Biomed. Eng. 2019, 67, 88–98. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, X.; Zhang, L.; He, X.; Lv, Z. Simultaneous detection of blink and heart rate using multi-channel ICA from smart phone videos. Biomed. Signal Process. Control. 2017, 33, 189–200. [Google Scholar] [CrossRef]
- Tsujikawal, M.; Onishil, Y.; Kiuchil, Y.; Ogatsul, T.; Nishino, A.; Hashimoto, S. Drowsiness Estimation from Low-Frame-Rate Facial Videos using Eyelid Variability Features. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 5203–5206. [Google Scholar]
- Farré, R.; Navajas, D.; Montserrat, J.M. Is Telemedicine a Key Tool for Improving Continuous Positive Airway Pressure Adherence in Patients with Sleep Apnea? Am. J. Respir. Crit. Care Med. 2018, 197, 12–14. [Google Scholar] [CrossRef] [PubMed]
- Lugo, V.M.; Garmendia, O.; Suarez-Girón, M.; Torres, M.; Vázquez-Polo, F.J.; Negrín, M.A.; Moraleda, A.; Roman, M.; Puig, M.; Ruiz, C.; et al. Comprehensive management of obstructive sleep apnea by telemedicine: Clinical improvement and cost-effectiveness of a Virtual Sleep Unit. A randomized controlled trial. PLoS ONE 2019, 14, e0224069. [Google Scholar] [CrossRef]
- Schoch, O.D.; Baty, F.; Boesch, M.; Benz, G.; Niedermann, J.; Brutsche, M.H. Telemedicine for Continuous Positive Airway Pressure in Sleep Apnea. A Randomized, Controlled Study. Ann. Am. Thorac. Soc. 2019, 16, 1550–1557. [Google Scholar] [CrossRef] [PubMed]
- di Rienzo, M.; Rizzo, G.; Işilay, Z.M.; Lombardi, P. SeisMote: A Multi-Sensor Wireless Platform for Cardiovascular Monitoring in Laboratory, Daily Life, and Telemedicine. Sensors 2020, 20, 680. [Google Scholar] [CrossRef] [Green Version]
- Ingravallo, F.; Vignatelli, L.; Pagotto, U.; Vandi, S.; Moresco, M.; Mangiaruga, A.; Oriolo, C.; Zenesini, C.; Pizza, F.; Plazzi, G. Protocols of a diagnostic study and a randomized controlled non-inferiority trial comparing televisits vs standard in-person outpatient visits for narcolepsy diagnosis and care: TElemedicine for NARcolepsy (TENAR). BMC Neurol. 2020, 20, 1–7. [Google Scholar] [CrossRef]
- Modica, E.; Cartocci, G.; Rossi, D.; Levy, A.C.M.; Cherubino, P.; Maglione, A.G.; Di Flumeri, G.; Mancini, M.; Montanari, M.; Perrotta, D.; et al. Neurophysiological Responses to Different Product Experiences. Comput. Intell. Neurosci. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cartocci, G.; Caratù, M.; Modica, E.; Maglione, A.G.; Rossi, D.; Cherubino, P.; Babiloni, F. Electroencephalographic, Heart Rate, and Galvanic Skin Response Assessment for an Advertising Perception Study: Application to Antismoking Public Service Announcements. J. Vis. Exp. 2017, 2017, e55872. [Google Scholar] [CrossRef]
- Robb, C.E.; De Jager, C.A.; Ahmadi-Abhari, S.; Giannakopoulou, P.; Udeh-Momoh, C.; McKeand, J.; Price, G.; Car, J.; Majeed, A.; Ward, H.; et al. Associations of Social Isolation with Anxiety and Depression During the Early COVID-19 Pandemic: A Survey of Older Adults in London, UK. Front. Psychiatry 2020, 11, 591120. [Google Scholar] [CrossRef]
- Fancourt, D.; Steptoe, A.; Bu, F. Trajectories of anxiety and depressive symptoms during enforced isolation due to COVID-19: Longitudinal analyses of 36,520 adults in England. medRxiv 2020, in press. [Google Scholar]
- Kane, M.J.; Conway, A.R.A.; Miura, T.K.; Colflesh, G.J.H. Working memory, attention control, and the n-back task: A question of construct validity. J. Exp. Psychol. Learn. Mem. Cogn. 2007, 33, 615–622. [Google Scholar] [CrossRef] [Green Version]
- Bradley, M.M.; Lang, P.J. The International Affective Digitized Sounds: Affective Ratings of Sounds and Instruction Manual; Technical Report B-3; University of Florida: Gainesville, FL, USA, 2007. [Google Scholar]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. Adv. Psychol. 1988, 52, 139–183. [Google Scholar] [CrossRef]
- Di Flumeri, G.; Arico, P.; Borghini, G.; Colosimo, A.; Babiloni, F. A new regression-based method for the eye blinks artifacts correction in the EEG signal, without using any EOG channel. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 3187–3190. [Google Scholar]
- Kleifges, K.; Bigdely-Shamlo, N.; Kerick, S.E.; Robbins, K.A. BLINKER: Automated Extraction of Ocular Indices from EEG Enabling Large-Scale Analysis. Front. Neurosci. 2017, 11, 12. [Google Scholar] [CrossRef] [Green Version]
- King, D.E. Dlib-ml: A Machine Learning Toolkit. J. Mach. Learn. Res. 2009, 10, 1755–1758. [Google Scholar]
- Rajesh, K.N.; Dhuli, R. Classification of imbalanced ECG beats using re-sampling techniques and AdaBoost ensemble classifier. Biomed. Signal. Process. Control. 2018, 41, 242–254. [Google Scholar] [CrossRef]
- GitHub-Kostasthanos/Drowsiness-Detection: Real Time Drowsiness Detection (Blinks or Yawns) with OpenCV Using Facial Landmarks. Available online: https://github.com/kostasthanos/Drowsiness-Detection (accessed on 20 January 2021).
- Lenz, G.; Ieng, S.-H.; Benosman, R. Event-Based Face Detection and Tracking Using the Dynamics of Eye Blinks. Front. Neurosci. 2020, 14, 587. [Google Scholar] [CrossRef]
- Pan, J.; Tompkins, W.J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Goovaerts, H.G.; Ros, H.H.; van den Akker, T.J.; Schneider, H. Communications: A Digital QRS Detector Based on the Principle of Contour Limiting. IEEE Trans. Biomed. Eng. 1976, 23, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Thakor, N.V.; Webster, J.G.; Tompkins, W.J. Optimal Qrs Filter. Med. Biol. Eng. Comput. 1983, 21, 343–350. [Google Scholar] [CrossRef]
- Sharma, S.; Shanmugasundaram, K.; Ramasamy, S.K. FAREC—CNN based efficient face recognition technique using Dlib. In Proceedings of the 2016 International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), Piscataway, NJ, USA, 25–27 May 2016; pp. 192–195. [Google Scholar]
- Yu, M.; Yun, L.; Chen, Z.; Cheng, F. Research on video face detection based on AdaBoost algorithm training classifier. In Proceedings of the 2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS), Harbin, China, 3–5 June 2017; pp. 1–6. [Google Scholar]
- Sklearn.Decomposition.PCA—Scikit-Learn 0.23.1 Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html (accessed on 10 June 2020).
- Tarvainen, M.P.; Anta-Aho, P.O.; A Karjalainen, P. An advanced detrending method with application to HRV analysis. IEEE Trans. Biomed. Eng. 2002, 49, 172–175. [Google Scholar] [CrossRef]
- Singh, D.; Singh, B. Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 2020, 97, 105524. [Google Scholar] [CrossRef]
- Bakdash, J.Z.; Marusich, L.R. Repeated Measures Correlation. Front. Psychol. 2017, 8, 456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- di Flumeri, G.; Aricò, P.; Borghini, G.; Sciaraffa, N.; di Florio, A.; Babiloni, F. The Dry Revolution: Evaluation of Three Different EEG Dry Electrode Types in Terms of Signal Spectral Features, Mental States Classification and Usability. Sensors 2019, 19, 1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aricò, P.; Reynal, M.; Di Flumeri, G.; Borghini, G.; Sciaraffa, N.; Imbert, J.-P.; Hurter, C.; Terenzi, M.; Ferreira, A.; Pozzi, S.; et al. How Neurophysiological Measures Can be Used to Enhance the Evaluation of Remote Tower Solutions. Front. Hum. Neurosci. 2019, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Romeo, L.; Paolanti, M.; Bocchini, G.; Loncarski, J.; Frontoni, E. An Innovative Design Support System for Industry 4.0 Based on Machine Learning Approaches. In Proceedings of the 2018 5th International Symposium on Environment-Friendly Energies and Applications (EFEA), Rome, Italy, 24–26 September 2018; pp. 1–6. [Google Scholar]
- Romeo, L.; Loncarski, J.; Paolanti, M.; Bocchini, G.; Mancini, A.; Frontoni, E. Machine learning-based design support system for the prediction of heterogeneous machine parameters in industry 4. Expert. Syst. Appl. 2020, 140, 112869. [Google Scholar] [CrossRef]
- Cartocci, G.; Maglione, A.G.; Vecchiato, G.; Di Flumeri, G.; Colosimo, A.; Scorpecci, A.; Marsella, P.; Giannantonio, S.; Malerba, P.; Borghini, G.; et al. Mental workload estimations in unilateral deafened children. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milano, Italy, 25–29 August 2015; pp. 1654–1657. [Google Scholar] [CrossRef]
- Arico, P.; Borghini, G.; Di Flumeri, G.; Colosimo, A.; Graziani, I.; Imbert, J.-P.; Granger, G.; Benhacene, R.; Terenzi, M.; Pozzi, S.; et al. Reliability over time of EEG-based mental workload evaluation during Air Traffic Management (ATM) tasks. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milano, Italy, 25–29 August 2015; pp. 7242–7245. [Google Scholar] [CrossRef]
- Di Flumeri, G.; Borghini, G.; Aricò, P.; Sciaraffa, N.; Lanzi, P.; Pozzi, S.; Vignali, V.; Lantieri, C.; Bichicchi, A.; Simone, A.; et al. EEG-Based Mental Workload Neurometric to Evaluate the Impact of Different Traffic and Road Conditions in Real Driving Settings. Front. Hum. Neurosci. 2018, 12, 509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Chang, Z.; Qiu, Q.; Li, X.; Sapiro, G.; Bronstein, A.; Pietikäinen, M. RealSense = real heart rate: Illumination invariant heart rate estimation from videos. In Proceedings of the 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA), Oulu, Finland, 12–15 December 2016; pp. 1–6. [Google Scholar]
- Sood, S.K.; Mahajan, I. IoT-fog-based healthcare framework to identify and control hypertension attack. IEEE Internet Things J. 2019, 6, 1920–1927. [Google Scholar] [CrossRef]
- Di Flumeri, G.; De Crescenzio, F.; Berberian, B.; Ohneiser, O.; Kramer, J.; Aricò, P.; Borghini, G.; Babiloni, F.; Bagassi, S.; Piastra, S. Brain–Computer Interface-Based Adaptive Automation to Prevent Out-Of-The-Loop Phenomenon in Air Traffic Controllers Dealing With Highly Automated Systems. Front. Hum. Neurosci. 2019, 13, 296. [Google Scholar] [CrossRef] [Green Version]
- Redondo, B.; Vera, J.; Luque-Casado, A.; García-Ramos, A.; Jiménez, R. Associations between accommodative dynamics, heart rate variability and behavioural performance during sustained attention: A test-retest study. Vision Res. 2019, 163, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Butmee, T.; Lansdown, T.C.; Walker, G.H. Mental Workload and Performance Measurements in Driving Task: A Review Literature. In Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2018; Volume 823, pp. 286–294. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ronca, V.; Giorgi, A.; Rossi, D.; Di Florio, A.; Di Flumeri, G.; Aricò, P.; Sciaraffa, N.; Vozzi, A.; Tamborra, L.; Simonetti, I.; et al. A Video-Based Technique for Heart Rate and Eye Blinks Rate Estimation: A Potential Solution for Telemonitoring and Remote Healthcare. Sensors 2021, 21, 1607. https://doi.org/10.3390/s21051607
Ronca V, Giorgi A, Rossi D, Di Florio A, Di Flumeri G, Aricò P, Sciaraffa N, Vozzi A, Tamborra L, Simonetti I, et al. A Video-Based Technique for Heart Rate and Eye Blinks Rate Estimation: A Potential Solution for Telemonitoring and Remote Healthcare. Sensors. 2021; 21(5):1607. https://doi.org/10.3390/s21051607
Chicago/Turabian StyleRonca, Vincenzo, Andrea Giorgi, Dario Rossi, Antonello Di Florio, Gianluca Di Flumeri, Pietro Aricò, Nicolina Sciaraffa, Alessia Vozzi, Luca Tamborra, Ilaria Simonetti, and et al. 2021. "A Video-Based Technique for Heart Rate and Eye Blinks Rate Estimation: A Potential Solution for Telemonitoring and Remote Healthcare" Sensors 21, no. 5: 1607. https://doi.org/10.3390/s21051607
APA StyleRonca, V., Giorgi, A., Rossi, D., Di Florio, A., Di Flumeri, G., Aricò, P., Sciaraffa, N., Vozzi, A., Tamborra, L., Simonetti, I., & Borghini, G. (2021). A Video-Based Technique for Heart Rate and Eye Blinks Rate Estimation: A Potential Solution for Telemonitoring and Remote Healthcare. Sensors, 21(5), 1607. https://doi.org/10.3390/s21051607