Forecasting of Glucose Levels and Hypoglycemic Events: Head-to-Head Comparison of Linear and Nonlinear Data-Driven Algorithms Based on Continuous Glucose Monitoring Data Only
Abstract
:1. Introduction
2. The Considered Prediction Algorithms
2.1. Linear Black-Box Models
2.1.1. Choice of the Model Class
2.1.2. Model Complexity
2.1.3. Parameter Estimation
2.1.4. Model Prediction
2.2. Nonlinear Black-Box Models
2.2.1. Choice of the Model Class
2.2.2. Input Size and Hyperparameter Tuning
2.2.3. Model Training
2.2.4. Model Prediction
3. Criteria and Metrics for the Assessment of the Algorithms
3.1. Glucose Value Prediction
3.2. Hypoglycemia Prediction
Hypoglycemia Prediction Metrics
- True positive (TP): if an alarm was raised at least 5 min before the hypoglycemic event and at most DW+5 min before that episode, as shown in Figure 3 (top left panel). According to this definition, alarms raised with a time anticipation larger than DW+5 min were not counted as TPs, because it was difficult to claim a match between the alarm and the hypoglycemic event;
- False positive (FP): if an alarm was raised, but no event occurred in the following DW minutes, as shown Figure 3 (top-right panel);
- False negative (FN): if no alarm was raised at least 5 min before the event and at most DW+5 min before the event, as shown in Figure 3 (bottom-left panel);
4. The Dataset and Its Partitioning
4.1. Training and Test Set
4.2. Monte Carlo Simulations
5. Results
5.1. Illustration of a Representative Training–Test Partitioning Example
5.1.1. Linear Black-Box Models
5.1.2. Nonlinear Black-Box Models
5.2. Monte Carlo Analysis
6. Discussion and Main Findings
7. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kravarusic, J.; Aleppo, G. Diabetes Technology Use in Adults with Type 1 and Type 2 Diabetes. Endocrinol. Metab. Clin. 2020, 49, 37–55. [Google Scholar]
- Dovc, K.; Battelino, T. Evolution of Diabetes Technology. Endocrinol. Metab. Clin. 2020, 49, 1–18. [Google Scholar]
- Ullah, S.; Hamade, F.; Bubniene, U.; Engblom, J.; Ramanavicius, A.; Ramanaviciene, A.; Ruzgas, T. In-vitro model for assessing glucose diffusion through skin. Biosens. Bioelectron. 2018, 110, 175–179. [Google Scholar]
- Klonoff, D.C.; Ahn, D.; Drincic, A. Continuous glucose monitoring: A review of the technology and clinical use. Diabetes Res. Clin. Pract. 2017, 133, 178–192. [Google Scholar]
- Villena Gonzales, W.; Mobashsher, A.T.; Abbosh, A. The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors. Sensors 2019, 19, 800. [Google Scholar]
- Tang, L.; Chang, S.J.; Chen, C.J.; Liu, J.T. Non-Invasive Blood Glucose Monitoring Technology: A Review. Sensors 2020, 20, 6925. [Google Scholar]
- Shivers, J.P.; Mackowiak, L.; Anhalt, H.; Zisser, H. “Turn it off!”: Diabetes device alarm fatigue considerations for the present and the future. J. Diabetes Sci. Technol. 2013, 7, 789–794. [Google Scholar]
- McGarraugh, G. Alarm characterization for continuous glucose monitors used as adjuncts to self-monitoring of blood glucose. JDST 2010. [Google Scholar] [CrossRef] [Green Version]
- Cappon, G.; Vettoretti, M.; Sparacino, G.; Facchinetti, A. Continuous glucose monitoring sensors for diabetes management: A review of technologies and applications. Diabetes Metab. J. 2019, 43, 383–397. [Google Scholar]
- Camerlingo, N.; Vettoretti, M.; Del Favero, S.; Cappon, G.; Sparacino, G.; Facchinetti, A. A Real-Time Continuous Glucose Monitoring–Based Algorithm to Trigger Hypotreatments to Prevent/Mitigate Hypoglycemic Events. Diabetes Technol. Ther. 2019, 21, 644–655. [Google Scholar]
- Sun, Q.; Jankovic, M.V.; Budzinski, J.; Moore, B.; Diem, P.; Stettler, C.; Mougiakakou, S.G. A dual mode adaptive basal-bolus advisor based on reinforcement learning. IEEE J. Biomed. Health Inform. 2018, 23, 2633–2641. [Google Scholar]
- Palerm, C.C.; Willis, J.P.; Desemone, J.; Bequette, B.W. Hypoglycemia prediction and detection using optimal estimation. Diabetes Technol. Ther. 2005, 7, 3–14. [Google Scholar]
- Palerm, C.; Bequette, B. Hypoglycemia detection and prediction using continuous glucose monitoring-a study on hypoglycemic clamp data. J. Diabetes Sci. Technol. 2007, 1, 624–629. [Google Scholar]
- Yang, J.; Li, L.; Shi, Y.; Xie, X. An ARIMA model with adaptive orders for predicting blood glucose concentrations and hypoglycemia. IEEE J. Biomed. Health Inform. 2018, 23, 1251–1260. [Google Scholar]
- Zhu, T.; Li, K.; Herrero, P.; Chen, J.; Georgiou, P. A Deep Learning Algorithm for Personalized Blood Glucose Prediction. KHD@ IJCAI. 2018, pp. 64–78. Available online: http://ceur-ws.org/Vol-2148/paper12.pdf (accessed on 22 January 2021).
- Sun, Q.; Jankovic, M.V.; Bally, L.; Mougiakakou, S.G. Predicting blood glucose with an LSTM and Bi-LSTM based deep neural network. In Proceedings of the 2018 14th Symposium on Neural Networks and Applications (NEUREL), Belgrade, Serbia, 20–21 November 2018; pp. 1–5. [Google Scholar]
- Zecchin, C.; Facchinetti, A.; Sparacino, G.; Cobelli, C. Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information. Comput. Methods Programs Biomed. 2014, 113, 144–152. [Google Scholar]
- Hidalgo, J.I.; Colmenar, J.M.; Kronberger, G.; Winkler, S.M.; Garnica, O.; Lanchares, J. Data based prediction of blood glucose concentrations using evolutionary methods. J. Med. Syst. 2017, 41, 142. [Google Scholar]
- Oviedo, S.; Vehí, J.; Calm, R.; Armengol, J. A review of personalized blood glucose prediction strategies for T1DM patients. Int. J. Numer. Methods Biomed. Eng. 2017, 33, e2833. [Google Scholar]
- Zecchin, C.; Facchinetti, A.; Sparacino, G.; Cobelli, C. How much is short-term glucose prediction in type 1 diabetes improved by adding insulin delivery and meal content information to CGM data? A proof-of-concept study. J. Diabetes Sci. Technol. 2016, 10, 1149–1160. [Google Scholar]
- Li, K.; Daniels, J.; Liu, C.; Herrero, P.; Georgiou, P. Convolutional recurrent neural networks for glucose prediction. IEEE J. Biomed. Health Inform. 2019, 24, 603–613. [Google Scholar]
- Allen, N.; Gupta, A. Current diabetes technology: Striving for the artificial pancreas. Diagnostics 2019, 9, 31. [Google Scholar]
- Zarkogianni, K.; Litsa, E.; Mitsis, K.; Wu, P.Y.; Kaddi, C.D.; Cheng, C.W.; Wang, M.D.; Nikita, K.S. A review of emerging technologies for the management of diabetes mellitus. IEEE Trans. Biomed. Eng. 2015, 62, 2735–2749. [Google Scholar]
- Gani, A.; Gribok, A.V.; Lu, Y.; Ward, W.K.; Vigersky, R.A.; Reifman, J. Universal glucose models for predicting subcutaneous glucose concentration in humans. IEEE Trans. Inf. Technol. Biomed. 2009, 14, 157–165. [Google Scholar]
- Buckingham, B.; Chase, H.P.; Dassau, E.; Cobry, E.; Clinton, P.; Gage, V.; Caswell, K.; Wilkinson, J.; Cameron, F.; Lee, H.; et al. Prevention of nocturnal hypoglycemia using predictive alarm algorithms and insulin pump suspension. Diabetes Care 2010, 33, 1013–1017. [Google Scholar]
- Dassau, E.; Cameron, F.; Lee, H.; Bequette, B.W.; Zisser, H.; Jovanovič, L.; Chase, H.P.; Wilson, D.M.; Buckingham, B.A.; Doyle, F.J. Real-time hypoglycemia prediction suite using continuous glucose monitoring: A safety net for the artificial pancreas. Diabetes Care 2010, 33, 1249–1254. [Google Scholar]
- Zarkogianni, K.; Mitsis, K.; Litsa, E.; Arredondo, M.T.; Fico, G.; Fioravanti, A.; Nikita, K.S. Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring. Med. Biol. Eng. Comput. 2015, 53, 1333–1343. [Google Scholar]
- Frandes, M.; Timar, B.; Timar, R.; Lungeanu, D. Chaotic time series prediction for glucose dynamics in type 1 diabetes mellitus using regime-switching models. Sci. Rep. 2017, 7, 1–10. [Google Scholar]
- Joedicke, D.; Garnica, O.; Kronberger, G.; Colmenar, J.M.; Winkler, S.; Velasco, J.M.; Contador, S.; Hidalgo, J.I. Analysis of the performance of Genetic Programming on the Blood Glucose Level Prediction Challenge 2020. Available online: http://ceur-ws.org/Vol-2675/paper25.pdf (accessed on 29 August 2020).
- McShinsky, R.; Marshall, B. Comparison of Forecasting Algorithms for Type 1 Diabetic Glucose Prediction on 30 and 60-Min Prediction Horizons. Available online: http://ceur-ws.org/Vol-2675/paper2.pdf (accessed on 29 August 2020).
- Ljung, L. System Identification-Theory for the User, 2nd ed.; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Pillonetto, G.; Dinuzzo, F.; Chen, T.; De Nicolao, G.; Ljung, L. Kernel methods in system identification, machine learning and function estimation: A survey. Automatica 2014, 50, 657–682. [Google Scholar]
- Sparacino, G.; Zanderigo, F.; Corazza, S.; Maran, A.; Facchinetti, A.; Cobelli, C. Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE Trans. Biomed. Eng. 2007, 54, 931–937. [Google Scholar]
- Facchinetti, A.; Sparacino, G.; Guerra, S.; Luijf, Y.M.; DeVries, J.H.; Mader, J.K.; Ellmerer, M.; Benesch, C.; Heinemann, L.; Bruttomesso, D.; et al. Real-time improvement of continuous glucose monitoring accuracy: The smart sensor concept. Diabetes Care 2013, 36, 793–800. [Google Scholar]
- Facchinetti, A.; Sparacino, G.; Trifoglio, E.; Cobelli, C. A new index to optimally design and compare continuous glucose monitoring glucose prediction algorithms. Diabetes Technol. Ther. 2011, 13, 111–119. [Google Scholar]
- Del Favero, S.; Pillonetto, G.; Cobelli, C.; De Nicolao, G. A novel nonparametric approach for the identification of the glucose-insulin system in Type 1 diabetic patients. IFAC Proc. Vol. 2011, 44, 8340–8346. [Google Scholar]
- Cameron, F.; Wilson, D.M.; Buckingham, B.A.; Arzumanyan, H.; Clinton, P.; Chase, H.P.; Lum, J.; Maahs, D.M.; Calhoun, P.M.; Bequette, B.W. Inpatient studies of a Kalman-filter-based predictive pump shutoff algorithm. J. Diabetes Sci. Technol. 2012, 6, 1142–1147. [Google Scholar]
- Gadaleta, M.; Facchinetti, A.; Grisan, E.; Rossi, M. Prediction of adverse glycemic events from continuous glucose monitoring signal. IEEE J. Biomed. Health Inform. 2018, 23, 650–659. [Google Scholar]
- Georga, E.I.; Protopappas, V.C.; Ardigò, D.; Polyzos, D.; Fotiadis, D.I. A glucose model based on support vector regression for the prediction of hypoglycemic events under free-living conditions. Diabetes Technol. Ther. 2013, 15, 634–643. [Google Scholar]
- Bunescu, R.; Struble, N.; Marling, C.; Shubrook, J.; Schwartz, F. Blood glucose level prediction using physiological models and support vector regression. In Proceedings of the 2013 12th International Conference on Machine Learning and Applications, Miami, FL, USA, 4–7 December 2013; Volume 1, pp. 135–140. [Google Scholar]
- Rodríguez-Rodríguez, I.; Chatzigiannakis, I.; Rodríguez, J.V.; Maranghi, M.; Gentili, M.; Zamora-Izquierdo, M.Á. Utility of Big Data in Predicting Short-Term Blood Glucose Levels in Type 1 Diabetes Mellitus Through Machine Learning Techniques. Sensors 2019, 19, 4482. [Google Scholar]
- Pérez-Gandía, C.; Facchinetti, A.; Sparacino, G.; Cobelli, C.; Gómez, E.; Rigla, M.; de Leiva, A.; Hernando, M. Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring. Diabetes Technol. Ther. 2010, 12, 81–88. [Google Scholar]
- Aliberti, A.; Pupillo, I.; Terna, S.; Macii, E.; Di Cataldo, S.; Patti, E.; Acquaviva, A. A multi-patient data-driven approach to blood glucose prediction. IEEE Access 2019, 7, 69311–69325. [Google Scholar]
- El Idriss, T.; Idri, A.; Abnane, I.; Bakkoury, Z. Predicting Blood Glucose using an LSTM Neural Network. In Proceedings of the 2019 Federated Conference on Computer Science and Information Systems (FedCSIS), Leipzig, Germany, 1–4 September 2019; pp. 35–41. [Google Scholar]
- Gani, W.; Taleb, H.; Limam, M. Support vector regression based residual control charts. J. Appl. Stat. 2010, 37, 309–324. [Google Scholar]
- Wang, W.; Xu, Z.; Lu, W.; Zhang, X. Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing 2003, 55, 643–663. [Google Scholar]
- Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958. [Google Scholar]
- Sathe, P.M.; Venitz, J. Comparison of neural network and multiple linear regression as dissolution predictors. Drug Dev. Ind. Pharm. 2003, 29, 349–355. [Google Scholar]
- Siami-Namini, S.; Tavakoli, N.; Namin, A.S. A comparison of ARIMA and LSTM in forecasting time series. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 1394–1401. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Mirshekarian, S.; Shen, H.; Bunescu, R.; Marling, C. LSTMs and neural attention models for blood glucose prediction: Comparative experiments on real and synthetic data. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 706–712. [Google Scholar]
- Saito, T.; Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 2015, 10, e0118432. [Google Scholar]
- Wadwa, R.P.; Laffel, L.M.; Shah, V.N.; Garg, S.K. Accuracy of a factory-calibrated, real-time continuous glucose monitoring system during 10 days of use in youth and adults with diabetes. Diabetes Technol. Ther. 2018, 20, 395–402. [Google Scholar]
- Daskalaki, E.; Nørgaard, K.; Züger, T.; Prountzou, A.; Diem, P.; Mougiakakou, S. An early warning system for hypoglycemic/hyperglycemic events based on fusion of adaptive prediction models. J. Diabetes Sci. Technol. 2013, 7, 689–698. [Google Scholar]
- Frandes, M.; Timar, B.; Lungeanu, D. A Risk Based Neural Network Approach for Predictive Modeling of Blood Glucose Dynamics. MIE. 2016; pp. 577–581. Available online: https://pubmed.ncbi.nlm.nih.gov/27577449/ (accessed on 22 January 2021).
Model | Hyperparameter | Range |
---|---|---|
SVR | Error penalty term, kernel scale factor | 10–10 (logarithmic scaled) |
RegRF | Number of trees | 10–500 |
Number of leaves, max. number of splits | 1-max(2,training samples) (logarithmic scaled) | |
fNN | Number of layers | 1–3 |
Number of neurons | 5–20 | |
Activation function | Hyperbolic tangent, sigmoidal | |
Max. training epochs | 500–1500 | |
fNN | Number of layers | 1–3 |
Number of neurons | 5–20 | |
Activation function | Hyperbolic tangent, sigmoidal | |
Max. training epochs | 500–1500 | |
LSTM | Number of hidden units | 20–100 |
Max. training epochs | 50–1000 | |
Dropout rate | 0.01–0.7 |
Model Type | Model Class | Glucose Prediction Metric | Hypo Event Detection | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Delay (min) | RMSE (mg/dL) | COD (%) | F1-Score (%) | Precision (%) | Recall (%) | FP/Day | TG (min) | ||||
Population | AR * | 25 | 23.63 | 80.89 | 47 | 46 | 48 | 0.41 | 5 | ||
[ 23.75–25] | [20.91–32.24] | [72.39–86.59] | [5–10] | ||||||||
ARMA * | 25 | 23.75 | 81.23 | 46 | 45 | 47 | 0.31 | 5 | |||
[20–25] | [20.75–32.15] | [72.47–86.65] | [5–10] | ||||||||
ARIMA * | 25 | 23.78 | 81.21 | 55 | 63 | 48 | 0.33 | 5 | |||
[20–25] | [20.75–32.15] | [72.44–86.62] | [5–10] | ||||||||
Individual | Population order | AR | 20 | 22.73 | 84.63 | 55 | 63 | 48 | 0.47 | 10 | |
[20–25] | [19.02–30.36] | [80.98–87.9] | [5–15] | ||||||||
ARMA | 20 | 22.83 | 84.64 | 51 | 50 | 52 | 0.85 | 10 | |||
[20–25] | [19.31–30.91] | [77.01–88.36] | [5–15] | ||||||||
ARIMA | 25 | 23.12 | 83.36 | 67 | 64 | 71 | 0.67 | 10 | |||
[20–25] | [20.22–28.65] | [78.68–87.99] | [10–15] | ||||||||
Individual order | AR | 25 | 22.76 | 84.53 | 48 | 58 | 40 | 0.47 | 10 | ||
[20–25] | [18.76–29.47] | [80.79–88.1] | [5–10] | ||||||||
ARMA * | 25 | 22.55 | 83.71 | 36 | 48 | 29 | 0.51 | 10 | |||
[23.75–25] | [20.16–30.46] | [76.99–87.91] | [5–15] | ||||||||
ARIMA * | 25 | 22.15 | 84.64 | 72 | 64 | 82 | 0.76 | 10 | |||
[25–25] | [19.8–28.87] | [78.71–87.59] | [5–15] | ||||||||
Individual order | AR | 25 | 22.79 | 83.89 | 28 | 42 | 21 | 0.43 | 5 | ||
[20–25] | [19.75–28.84] | [76.7–88.36] | [5–15] | ||||||||
30 min | ARMA | 25 | 22.89 | 83.37 | 24 | 39 | 17 | 0.44 | 5 | ||
specific | [25–30] | [20.54–29.81] | [75.8–87.93] | [5–15] | |||||||
ARIMA * | 25 | 22.39 | 84.47 | 64 | 56 | 75 | 0.57 | 10 | |||
[25–25] | [19.97–29.31] | [76.28–88.23] | [5–10] | ||||||||
Individual order | Day and night | AR | 25 | 24.22 | 80.72 | 26 | 41 | 20 | 0.29 | 5 | |
[25–25] | [20.74–30.16] | [76.37–84.87] | [5–15] | ||||||||
ARMA | 25 | 24.37 | 77.31 | 24 | 39 | 17 | 0.29 | 10 | |||
[25–26.25] | [21.31–30.25] | [75.49–84.72] | [5–15] | ||||||||
ARIMA | 25 | 23.1 | 82.2 | 67 | 70 | 64 | 0.44 | 10 | |||
[25–26.25] | [20.47–29.76] | [76.95–86.74] | [5–15] | ||||||||
Regularized | AR | 20 | 23.23 | 82.52 | 54 | 60 | 50 | 0.55 | 10 | ||
[20–25] | [19.85–31.01] | [77.22–87.74] | [5–20] | ||||||||
RLS | AR | 30 | 27.43 | 75.66 | 68 | 55 | 86 | 0.88 | 15 | ||
[25–30] | [24.63–33.88] | [67.77–81.16] | [10–25] |
Model Type | Model Class | Glucose Prediction Metric | Hypo Event Detection | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Delay (min) | RMSE (mg/dL) | COD (%) | F1-Score | Precision | Recall | FP/Day | TG (min) | ||||
Population | SVR | 25 | 22.85 | 85.14 | 65 | 63 | 69 | 0.53 | 10 | ||
[25–25] | [18.81–28.61] | [79.35–88.15] | [5–15] | ||||||||
RegRF | 30 | 23.42 | 80.65 | 25 | 36 | 20 | 0.3 | 5 | |||
[30–30] | [21.29–30.86] | [72.83–84.91] | [5–10] | ||||||||
fNN | 20 | 21.81 | 86.19 | 31 | 39 | 27 | 0.36 | 5 | |||
[20–25] | [18.65–27.86] | [81.1–89.41] | [5–11.25] | ||||||||
LSTM | 25 | 23.1 | 82.31 | 33 | 46 | 26 | 0.3 | 5 | |||
[20–25] | [20.26–28.75] | [77.54–87.33] | [5–10] | ||||||||
Individual | Population hyperparameters | SVR | 25 | 21.97 | 84.22 | 64 | 72 | 59 | 0.31 | 10 | |
[25–25] | [19.68–28.98] | [78.78–87.39] | [5–15] | ||||||||
RegRF | 30 | 23.81 | 72.73 | 25 | 33 | 21 | 0.03 | 5 | |||
[30–30] | [21.35–30.47] | [67.85–79.93] | [5–5] | ||||||||
fNN | 20 | 21.76 | 83.98 | 47 | 59 | 40 | 0.45 | 10 | |||
[20–25] | [18.89–28.97] | [79.37–88.7] | [5–18.75] | ||||||||
Individual hyperparameters | SVR | 20 | 22.16 | 81.97 | 54 | 57 | 52 | 0.62 | 10 | ||
[20–25] | [20.62–28.79] | [65.89–87.45] | [10–20] | ||||||||
RegRF | 25 | 26.16 | 77.14 | 47 | 60 | 39 | 0.42 | 12.5 | |||
[25–25] | [22.49–33.97] | [69.79–82.47] | [5–20] | ||||||||
fNN | 20 | 21.52 | 85.37 | 47 | 57 | 40 | 0.47 | 10 | |||
[20–25] | [19.12–28.29] | [78.78–88.11] | [5–18.75] | ||||||||
Individual hyperparameters | Day and night | SVR | 25 | 30.13 | 67.75 | 48 | 61 | 40 | 0.41 | 10 | |
[20–25] | [25.17–40.9] | [57–76.34] | [5–20] | ||||||||
RegRF | 25 | 33.34 | 68.47 | 39 | 53 | 31 | 0.43 | 10 | |||
[25–25] | [26.84–37.71] | [62.71–74.49] | [10–20] | ||||||||
fNN | 20 | 24.4 | 82.11 | 33 | 53 | 24 | 0.34 | 10 | |||
[20–25] | [20.88–29.89] | [74.84–86.19] | [5–17.5] |
Model Type | Model Class | Glucose Prediction Metric | Hypo Event Detection | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Delay (min) | RMSE (mg/dL) | COD (%) | F1-Score | Precision | Recall | FP/Day | TG (min) | ||||
Population | AR | 25(0) | 23.86(2.44) | 79.8(3.18) | 46.97(6.04) | 54.33(6.8) | 41.64(6.45) | 0.48(0.12) | 8.32(2.21) | ||
ARMA | 25(0) | 23.75(2.43) | 79.86(3.17) | 47.17(5.81) | 54.77(6.8) | 41.69(6.16) | 0.47(0.12) | 8.09(2.25) | |||
ARIMA | 25(0) | 23.96(2.42) | 80.06(3.16) | 50.27(5.18) | 58.24(6.32) | 44.51(5.7) | 0.44(0.13) | 9.18(1.8) | |||
Individual | Population order | AR | 21.45(2.29) | 22.79(1.57) | 84.83(1.82) | 44.12(7.03) | 51.99(6.63) | 38.58(7.57) | 0.48(0.1) | 9.59(1.42) | |
ARMA | 21.55(2.33) | 22.89(1.59) | 84.05(1.84) | 41.47(6.31) | 48.38(6.03) | 36.66(7.22) | 0.53(0.15) | 9.64(1.89) | |||
ARIMA | 24.73(1.15) | 22.74(1.8) | 83.74(1.64) | 62.83(5.6) | 56.23(6.12) | 71.67(6.8) | 0.77(0.19) | 11.73(2.4) | |||
Individual order | AR | 24.45(1.57) | 22.78(1.67) | 84.56(1.86) | 49.73(7.45) | 58.77(7) | 43.11(7.78) | 0,48(0.11) | 9.64(1.31) | ||
ARMA | 25(0) | 22.83(1.57) | 83.79(1.67) | 32.5(7.45) | 44.25(7.33) | 25.98(7.15) | 0.44(0.1) | 9.95(2.28) | |||
ARIMA | 25(0) | 22.13(1.58) | 84.36(1.77) | 70.5(3.69) | 61.04(4.33) | 83.64(3.89) | 0.73(0.13) | 10.18(0.94) | |||
Individual order | AR | 25(0) | 22.97(2.37) | 83.4(3.17) | 28.96(12.78) | 42.07(11.36) | 23.05(12.16) | 0.39(0.12) | 8.64(4.93) | ||
30 min | ARMA | 25(0) | 23.04(2.22) | 82.7(3.3) | 24.25(11.17) | 37.49(11.5) | 18.85(10.4) | 0.4(0.13) | 9.55(4.77) | ||
specific | ARIMA | 25(0) | 22.45(1.29) | 84.26(1.81) | 66.63(5.43) | 60.54(6.63) | 74.08(6.94) | 0.58(0.17) | 10(0) | ||
Individual order | Day and night | AR | 25(0) | 24.15(1.53) | 78.87(1.83) | 27.12(4.38) | 37.31(7.97) | 21.31(3.14) | 0.32(0.07) | 10(4.11) | |
ARMA | 25(0) | 24.44(1.59) | 78.75(2.18) | 25.57(4.96) | 36.95(10.63) | 19.55(3.39) | 0.28(0.08) | 9(4.04) | |||
ARIMA | 25(0) | 22.93(1.31) | 83.68(1.56) | 66.37(5.09) | 68.36(5.64) | 64.98(7.33) | 0.41(0.13) | 9.86(0.75) | |||
Regularized | AR | 21.82(2.43) | 22.87(1.63) | 83.1(2.11) | 43.53(6.27) | 48.5(5.59) | 39.72(7.2) | 0.57(0.1) | 11.36(2.54) | ||
RLS | AR | 29.82(0.94) | 27.67(1.6) | 76.12(2.11) | 63.89(4.46) | 51.43(5) | 84.32(5.16) | 1.01(0.15) | 16.36(2.4) | ||
Population | SVR | 24.45(2.99) | 22.72(2.75) | 81.69(8.39) | 50.81(13.21) | 47.59(11.73) | 44.15(12.83) | 0.56(0.33) | 9.79(3.03) | ||
RegRF | 25.09(0.67) | 23.35(1.77) | 80.91(1.89) | 19.57(11.74) | 23.99(16.56) | 12.24(11.07) | 0.43(0.18) | 8.47(4.22) | |||
fNN | 21.36(2.25) | 21.74(1.45) | 85.93(1.7) | 26.15(10.79) | 37.6(11.79) | 20.58(9.98) | 0.43(0.14) | 6.91(3.57) | |||
LSTM | 24.55(1.45) | 22.97(1.99) | 83.25(2.28) | 20.52(13.13) | 40.6(15.03) | 15.03(12.46) | 0.28(0.15) | 8.32(6.16) | |||
Individual | SVR | 24.27(3.52) | 22.6(4.62) | 82.89(11.77) | 53.82(12.75) | 59.91(11.02) | 49.54(12.67) | 0.47(0.35) | 11.15(3.26) | ||
Population | RegRF | 25.55(1.57) | 23.38(2.02) | 78.23(2.06) | 31.37(9.65) | 47.11(8.59) | 24.42(9.5) | 0.36(0.12) | 11.91(3.04) | ||
hyperparameters | fNN | 20.18(0.94) | 21.78(1.78) | 84.78(1.49) | 38.58(7.56) | 47.95(7.54) | 32.89(8.47) | 0.48(0.14) | 10.59(2.15) | ||
SVR | 23.64(2.25) | 22.21(2.09) | 81.32(2.36) | 53.63(7.86) | 58.21(7.16) | 49.71(9.69) | 0.55(0.13) | 12.36(2.82) | |||
Individual | RegRF | 25(0) | 26.06(2.02) | 77(2.31) | 40.34(6.68) | 50.81(7.04) | 33.93(7.24) | 0.44(0.11) | 15.36(3.38) | ||
hyperparameters | fNN | 20.09(0.67) | 21.63(1.69) | 85.1(1.45) | 37.54(7.59) | 47.02(8) | 31.77(8.14) | 0.49(0.13) | 10.14(2.12) | ||
Day and night | SVR | 24(2.02) | 29.22(2.33) | 71.35(4.33) | 45.85(6.85) | 53.92(7.98) | 39.89(7.04) | 0.52(0.12) | 12.55(3.25) | ||
Individual | RegRF | 25(0) | 29.72(2.06) | 69.69(3.2) | 34.49(6.11) | 45.47(6.39) | 28.28(6.7) | 0.45(0.1) | 14.41(3.91) | ||
hyperparameters | fNN | 20.73(1.78) | 23.54(1.91) | 82.11(1.92) | 32.25(6.88) | 48.69(7.4) | 24.5(6.56) | 0.35(0.1) | 11.18(3.22) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prendin, F.; Del Favero, S.; Vettoretti, M.; Sparacino, G.; Facchinetti, A. Forecasting of Glucose Levels and Hypoglycemic Events: Head-to-Head Comparison of Linear and Nonlinear Data-Driven Algorithms Based on Continuous Glucose Monitoring Data Only. Sensors 2021, 21, 1647. https://doi.org/10.3390/s21051647
Prendin F, Del Favero S, Vettoretti M, Sparacino G, Facchinetti A. Forecasting of Glucose Levels and Hypoglycemic Events: Head-to-Head Comparison of Linear and Nonlinear Data-Driven Algorithms Based on Continuous Glucose Monitoring Data Only. Sensors. 2021; 21(5):1647. https://doi.org/10.3390/s21051647
Chicago/Turabian StylePrendin, Francesco, Simone Del Favero, Martina Vettoretti, Giovanni Sparacino, and Andrea Facchinetti. 2021. "Forecasting of Glucose Levels and Hypoglycemic Events: Head-to-Head Comparison of Linear and Nonlinear Data-Driven Algorithms Based on Continuous Glucose Monitoring Data Only" Sensors 21, no. 5: 1647. https://doi.org/10.3390/s21051647
APA StylePrendin, F., Del Favero, S., Vettoretti, M., Sparacino, G., & Facchinetti, A. (2021). Forecasting of Glucose Levels and Hypoglycemic Events: Head-to-Head Comparison of Linear and Nonlinear Data-Driven Algorithms Based on Continuous Glucose Monitoring Data Only. Sensors, 21(5), 1647. https://doi.org/10.3390/s21051647