Acoustical Slot Mode Sensor for the Rapid Coronaviruses Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Samples
2.2. Antibodies
2.3. Electron Microscopy
2.4. Solutions
2.5. Description of the Sensor and Measurement Method
2.6. Statistical Analysis
3. Results
4. Discussion
- -
- Detection of viral RNA,
- -
- Detection of antibodies produced upon contact with an infection [36].
- -
- Sensors for the viral antigen analysis,
- -
- Sensors for the specific antibodies’ determination.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beeching, N.J.; Fletcher, T.E.; Fowler, R. COVID-19. BMJ Best Practices. BMJ Publishing Group. 2020. Available online: http://bestpractice.bmj.com/topics/en-gb/3000168 (accessed on 26 February 2021).
- Communicable Disease Threats Report, 9–15 February 2020, Week-7. ECDC. Available online: https://www.ecdc.europa.eu/en/publications-data/communicable-disease-threats-report-9-15-february-2020-week-7 (accessed on 14 February 2021).
- Cheng, Q.H.; Niu, X.Y. Investigation on the porcine epidemic diarrhea prevalent on Qinhai. Vet. Sci. 1992, 22, 22–23. [Google Scholar]
- Straw, B.E.; D’Allaire, S.; Mengeling, W.L.; Taylor, D.J. (Eds.) Disease of Swine; Iowa State University Press: Ames, IA, USA, 2000; 1209p. [Google Scholar]
- Carte, R.J.; Saunders, V. Virology: Principles and Applications; John Wiley & Sons Ltd: London, UK, 2007; 358p. [Google Scholar]
- Souf, S. Recent advances in diagnostic testing for viral infections. Biosci Horizons. Int. J. Stud. Res. 2016, 9, hzw010. [Google Scholar] [CrossRef]
- Coiras, M.T.; Aguilar, J.C.; Garcia, M.L.; Casas, I.; Pérez-Breña, P. Simultaneous detection of fourteen respiratory viruses in clinical specimens by two multiplex reverse transcription nested-PCR assays. J. Med. Virol. 2004, 72, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Del Pilar Martinez Viedma, M.; Puri, V.; Oldfield, L.M.; Shabman, R.S.; Tan, G.S.; Pickett, B.E. Optimization of qRT-PCR assay for zika virus detection in human serum and urine. Virus Res. 2019, 263, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Samson, R.; Navale, G.R.; Dharne, M.S. Biosensors: Frontiers in rapid detection of COVID-19. Biotech 2020, 10, 385. [Google Scholar] [CrossRef]
- Yoshihara, N. ELISA for diagnosis of infections by viruses. Nihon Rinsho 1995, 53, 2277–2282. (In Japanese) [Google Scholar] [PubMed]
- Brussaard, C.P.D.; Marie, D.; Bratbak, G. Flow cytometric detection of viruses. J. Virol. Methods 2000, 85, 175–182. [Google Scholar] [CrossRef]
- Lin, B.; Blaney, K.M.; Malanoski, A.P.; Ligler, A.G.; Schnur, J.M.; Metzgar, D.; Russell, K.L.; Stenger, D.A. Using a resequencing microarray as a multiple respiratory pathogen detection assay. J. Clin. Microbiol. 2007, 45, 443–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehlmann, M.; Bonner, A.B.; Williams, J.V.; Dankbar, D.M.; Moore, C.L.; Kuchta, R.D.; Podsiad, A.B.; Tamerius, J.D.; Dawson, E.D.; Rowlen, K.L. Comparison of the MChip to viral culture, reverse transcription-PCR, and the QuickVueinfluenzaA+B test for rapid diagnosis of influenza. J. Clin. Microbiol. 2007, 45, 1234–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huguenin, A.; Moutte, L.; Renois, F.; Lévêque, N.; Talmud, D.; Abely, M.; Nguyen, Y.; Carrat, F.; Andreoletti, L. Broad respiratory virus detection in infants hospitalized for bronchiolitis by use of a multiplex RT-PCR DNA microarray system. J. Med. Virol. 2012, 84, 979–985. [Google Scholar] [CrossRef]
- Kurochkin, I.N.; Eremenko, A.V.; Evtushenko, E.G.; Nechaeva, N.L.; Durmanov, N.N.; Guliev, R.R.; Ryzhikov, I.A.; Boginskaya, I.A.; Sarychev, A.K.; Ivanov, A.V.; et al. SERS for Bacteria, Viruses, and Protein Biosensing. In Macro, Micro and Nano-Biosensors. Potential Applications and Possible Limitations; Rai, M., Reshetilov, A., Plekhanova, Y., Ingle, A.P., Eds.; Springer International Publisher: Cham, Switzerland, 2021; pp. 75–94. ISBN 978-3-030-55489-7. [Google Scholar]
- Ozer, T.; Geiss, B.J.; Henry, C.S. Review—Chemical and biological sensors for viral detection. J. Electrochem. Soc. 2020, 167, 037523. [Google Scholar] [CrossRef] [Green Version]
- Adnane, A. Electrochemical Biosensors for Virus Detection. In Biosensors for Health, Environment and Biosecurity; Serra, P.A., Ed.; InTech: Rijeka, Croatia, 2011; Chapter 14; 550p, ISBN 978-953-307-443-6. [Google Scholar] [CrossRef]
- Qi, C.; Lin, Y.; Feng, J.; Wang, Z.-H.; Zhu, C.-F.; Meng, Y.-H.; Yan, X.-Y.; Wan, L.-J.; Jin, G. Phage M13KO7 detection with biosensor based on imaging ellipsometry and AFM microscopic confirmation. Virus Res. 2009, 140, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Guliy, O.I.; Zaitsev, B.D.; Borodina, I.A. Biosensors for virus detection. In Macro, Micro and Nano-biosensors. Potential Applications and Possible Limitations; Rai, M., Reshetilov, A., Plekhanova, Y., Ingle, A.P., Eds.; Springer International Publisher: Cham, Switzerland, 2021; pp. 95–116. ISBN 978-3-030-55489-7. [Google Scholar] [CrossRef]
- Saylan, Y.; Erdem, Ö.; Ünal, S.; Denizli, A. An alternative medical diagnosis method: Biosensors for virus detection. Biosensors 2019, 9, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guliy, O.I.; Zaitsev, B.D.; Kuznetsova, I.E.; Shikhabudinov, A.M.; Balko, A.B.; Teplykh, A.A.; Staroverov, S.A.; Dykman, L.A.; Makarikhina, S.S.; Ignatov, O.V. Application of the method of electro-acoustical analysis for the detection of bacteriophages in a liquid phase. Biophysics 2016, 61, 52–58. [Google Scholar] [CrossRef]
- Guliy, O.I.; Zaitsev, B.D.; Borodina, I.A.; Shikhabudinov, A.M.; Staroverov, S.A.; Dykman, L.A.; Fominc, A.S. Electro-acoustic sensor for the real-time identification of the bacteriophages. Talanta 2018, 178, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Guliy, O.I.; Zaitsev, B.D.; Borodina, I.A.; Fomin, A.S.; Staroverov, S.A.; Dykman, L.A.; Shikhabudinov, A.M. Use of mini-antibodies for detection of bacteriophages by the electroaucoustic analysis method. Biophysics 2017, 62, 373–384. [Google Scholar] [CrossRef]
- Borodina, I.A.; Zaitsev, B.D.; Burygin, G.L.; Guliy, O.I. Sensor based on the slot acoustic wave for the non-contact analysis of the bacterial cells–Antibody binding in the conducting suspensions. Sens. Actuators B Chem. 2018, 268, 217–222. [Google Scholar] [CrossRef]
- Staroverov, S.A.; Volkov, A.A.; Mezhenny, P.V.; Domnitsky, I.Y.; Fomin, A.S.; Kozlov, S.V.; Dykman, L.A.; Guliy, O.I. Prospects for the use of spherical gold nanoparticles in immunization. Appl. Microbiol. Biot. 2019, 103, 437–447. [Google Scholar] [CrossRef]
- Hoogenboom, H.R.; Griffits, A.D.; Johnson, K.S.; Chiswell, D.J.; Hundson, P.; Winter, G. Multi-subunit proteins on the surface of filamentous phage: Methodologies for displaying antibody (FAB) heavy and light chains. Nucleic Acids Res. 1991, 19, 4133–4137. [Google Scholar] [CrossRef] [Green Version]
- Sambrook, E.F.; Fritsch, T. Maniatis, Molecular Cloning: A Laborotory Manual, 2nd ed.; Cold Spring. Mavbov Lab. Press: New York, NY, USA, 1989. [Google Scholar]
- Beatty, J.D.; Beatty, B.G.; Vlahos, W.G. Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. J. Immunol. Methods 1987, 100, 173–179. [Google Scholar] [CrossRef]
- Borodina, I.A.; Zaitsev, B.D.; Kuznetsova, I.E.; Teplykh, A.A. Acoustic Waves in a Structure Containing Two Piezoelectric Plates Separated by an Air (Vacuum) Gap. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 2677–2681. [Google Scholar] [CrossRef]
- Harapan, H.; Itoh, N.; Yufika, A.; Winardi, W.; Keam, S.; Te, H.; Megawati, D.; Hayati, Z.; Wagner, A.L.; Mudatsir, M. Coronavirus disease 2019 (COVID-19): A literature review. J. Infect. Public Health 2020, 13, 667–673. [Google Scholar] [CrossRef]
- Holmes, K.V. SARS-associated coronavirus. N. Engl. J. Med. 2003, 348, 1948–1951. [Google Scholar] [CrossRef]
- Delmas, B.; Gelfi, J.; Laude, H. Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. J. Gen. Virol. 1986, 67, 1405–1418. [Google Scholar] [CrossRef]
- Sturman, L.S.; Riehard, C.S.; Holmes, K.V. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus by trypsin and separation of two different 90K cleavage fragments. J. Gen. Virol. 1985, 56, 904–911. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Cheng, Y.F. Biosensors for bacterial detection. Int. J. Biosens. Bioelectron. 2017, 2, 197–199. [Google Scholar] [CrossRef] [Green Version]
- Borodina, I.A.; Zaitsev, B.D.; Teplykh, A.A. The influence of viscous and conducting liquid on the characteristics of the slot acoustic wave. Ultrasonics 2018, 82, 39–43. [Google Scholar] [CrossRef]
- Sheikhzadeh, E.; Eissa, S.; Ismail, A.; Zouro, M. Diagnostic techniques for COVID-19 and new developments. Talanta 2020, 220, 121392. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Bang, D.D.; Wolff, A. 2019 Novel coronavirus disease (COVID-19): Paving the road for rapid detection and point-ofcare diagnostics. Micromachines 2020, 11, 306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G.A.; Wang, J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano 2020, 14, 5268–5277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.; Wang, X.; Han, L.; Chen, T.; Wang, L.; Li, H.; Li, S.; He, L.; Fu, X.; Chen, S.; et al. Multiplex reverse transcription loop-mediated isothermal amplification combined with nanoparticle-based lateral flow biosensor for the diagnosis of COVID-19. Biosens. Bioelectron. 2020, 166, 112437. [Google Scholar] [CrossRef]
- Park, G.S.; Ku, K.; Baek, S.H.; Kim, S.J.; Kim, S.I.; Kim, B.T.; Maeng, J.S. Development of Reverse Transcription Loop-Mediated Isothermal Amplification Assays Targeting Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). J. Mol. Diagn. 2020, 22, 729–735. [Google Scholar] [CrossRef]
- Yu, L.; Wu, S.; Hao, X.; Dong, X.; Mao, L.; Pelechano, V.; Chen, W.-H.; Yin, X. Rapid detection of COVID-19 coronavirus using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform. Clin. Chem. 2020, 66, 975–977. [Google Scholar] [CrossRef] [PubMed]
- Seo, G.; Lee, G.; Kim, M.J.; Baek, S.-H.; Choi, M.; Ku, K.B.; Lee, C.-S.; Jun, S.; Park, D.; Kim, H.G.; et al. Rapid COVID-19 detection causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 2020, 14, 5135–5142. [Google Scholar] [CrossRef] [Green Version]
- Poghossian, A.; Jablonski, M.; Molinnus, D.; Wege, C.; Schöning, M.J. Field-Effect Sensors for Virus Detection: From Ebola to SARS-CoV-2 and Plant Viral Enhancers. Front. Plant Sci. 2020, 11, 598103. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Mahmoudi, T.; Ahn, M.-S.; Hahn, Y.-B. Recent advances in nanowires-based field-effect transistors for biological sensor applications. Biosens. Bioelectron. 2018, 100, 312–325. [Google Scholar] [CrossRef] [PubMed]
- Broughton, J.P.; Deng, X.; Yu, G.; Fasching, C.L.; Servellita, V.; Singh, J.; Miao, X.; Streithorst, J.A.; Granados, A.; Sotomayor-Gonzalez, A.; et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 2020, 38, 870–874. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Qi, Q.; Jing, Q.; Ao, S.; Zhang, Z.; Ding, M.; Wu, M.; Liu, K.; Wang, W.; Ling, Y. Electrical probing of COVID-19 spike protein receptor binding domain via a graphene field-effect transistor. arXiv 2020, arXiv:2003.12529. [Google Scholar]
- Mavrikou, S.; Moschopoulou, G.; Tsekouras, V.; Kintzios, S. Development of a portable, ultra-rapid and ultra-sensitive cell-based biosensor for the direct detection of the SARS-CoV-2 S1 spike protein antigen. Sensors 2020, 20, 3121. [Google Scholar] [CrossRef]
- Moitra, P.; Alafeef, M.; Dighe, K.; Frieman, M.; Pan, D. Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano 2020, 14, 7617–7627. [Google Scholar] [CrossRef]
- Guliy, O.I.; Kanevskiy, M.V.; Fomin, A.S.; Staroverov, S.A.; Bunin, V.D. Progress in the use of an electro-optical sensor for virus detection. Opt. Commun. 2020, 465, 125605. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Z.; Zhai, X.; Li, Y.; Lin, L.; Zhao, H.; Bian, L.; Li, P.; Yu, L.; Wu, Y. Rapid and sensitive detection of anti-SARS-CoV-2 IgG using lanthanide-doped nanoparticles-based lateral flow immunoassay. Anal. Chem. 2020, 92, 7226–7231. [Google Scholar] [CrossRef]
- Miripour, Z.S.; Sarrami-Forooshani, R.; Sanati, H.; Makarem, J.; Taheri, M.S.; Shojaeian, F.; Eskafi, A.H.; Abbasvandi, F.; Namdar, N.; Ghafari, H.; et al. Real-time diagnosis of reactive oxygen species (ROS) in fresh sputum by electrochemical tracing; correlation between COVID-19 and viral-induced ROS in lung/respiratory epithelium during this pandemic. Biosens. Bioelectron. 2020, 165, 112435. [Google Scholar] [CrossRef] [PubMed]
- Mahari, S.; Roberts, A.; Shahdeo, D.; Gandhi, S. eCovSens-Ultrasensitive novel in-house built printed circuit board based electrochemical device for rapid detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Zuo, B.; Li, S.; Guo, Z.; Zhang, J.; Chen, C. Piezoelectric Immunosensor for SARS-Associated Coronavirus in Sputum. Anal. Chem. 2004, 76, 3536–3540. [Google Scholar] [CrossRef] [PubMed]
- Bisoffi, M.; Hjelle, B.; Brown, D.C.; Branch, D.W.; Edwards, T.L.; Brozik, S.M.; Bondu-Hawkins, V.S.; Larson, R.S. Detection of viral bioagents using a shear horizontal surface acoustic wave biosensor. Biosens. Bioelectron. 2008, 23, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Moll, N.; Pascal, E.; Dinh, D.H.; Lachaud, J.-L.; Vellutini, L.; Pillot, J.-P.; Rebière, D.; Moynet, D.; Pistré, J.; Mossalayi, D.; et al. Multipurpose Love acoustic wave immunosensor for bacteria, virus or proteins detection. IRBM 2008, 29, 155–161. [Google Scholar] [CrossRef]
- Kurosawa, S.; Park, J.W.; Aizawa, H.; Wakida, S.; Tao, H.; Ishihara, K. Quartz crystal microbalance immunosensors for environmental monitoring. Biosens. Bioelectron. 2006, 22, 473–481. [Google Scholar] [CrossRef]
- Matatagui, D.; Fontecha, J.L.; Fernández, M.J.; Gràcia, I.; Cané, C.; Santos, J.P.; Horrillo, M.C. Love-Wave Sensors Combined with Microfluidics for Fast Detection of Biological Warfare Agents. Sensors 2014, 14, 12658–12669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Amounts of Antibodies, μL/mL | Frequency, MHz | |||||||||
2.71 | 2.82 | 2.93 | 3.04 | 3.15 | 3.26 | 3.37 | 3.48 | 3.59 | 3.7 | |
Change of the resonance peak depth, dB | ||||||||||
5 | 6.2 | 6.4 | 7.1 | 3.7 | 3.8 | 5.7 | 4.1 | 5.7 | 5.8 | 4.1 |
10 | 4.46 | 6.7 | 5.81 | 2.81 | 2.97 | 4.99 | 4.91 | 4.29 | 3.67 | 3.86 |
15 | 5.3 | 7.2 | 5.69 | 2.8 7 | 3.81 | 4.5 | 5.18 | 3.86 | 5.01 | 4.01 |
20 | 6.8 | 7.9 | 6.72 | 3.81 | 4.87 | 5.95 | 5.41 | 5.81 | 6.29 | 4.93 |
25 | 5.38 | 7.05 | 5.23 | 2.91 | 3.29 | 5.29 | 2.81 | 5.23 | 3.77 | 3.84 |
30 | 6.32 | 6.59 | 5.48 | 3.47 | 3.51 | 3.91 | 4.99 | 4.78 | 3.95 | 4.66 |
Conductivity of Solution, μs/cm | Change the Depth of the Resonance Peak, dB | ||
---|---|---|---|
M13K07 + AbTGEV | TGEV + AbTGEV | TGEV + M13K07 + AbTGEV | |
4.1 | 0.11 | 4.61 | 5.28 |
50 | 0.09 | 2.37 | 3.1 |
100 | 0.05 | 1.89 | 2.2 |
No | Type of Sensor | Literary Source |
---|---|---|
1 | Dual-function plasmon biosensor using the plasmon photothermal (PPT) effect and localized surface plasmon resonance (LSPR) | [38] |
2 | Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) assay | [39,40,41] |
3 | Nano-biosensor based on the field-effect transistor (FET) method containing antibodies against S-protein loaded on graphene sheet. | [42] |
4 | Biosensors based on semiconductor field-effect devices (FEDs) enrichment on densely antibody- or aptamer-equipped sensors | [43] |
5 | The sensor based on the field-effect transistor utilizing the coating of the graphene sheets with a monoclonal antibody against the severe acute respiratory syndrome coronavirus SARS-CoV-2 spike protein. They determined its sensitivity using antigen protein | [44] |
6 | Biological sensor using Clustered Regularly Interspaced Palindromic Repeats CRISPR-Chip coupled with a graphene-based field-effect transistor | [45] |
7 | Graphene field-effect transistor (Gr-FET) | [46] |
8 | Cell-based potentiometric biosensor | [47] |
9 | Surface plasmon resonance-based colorimetric nano-biosensor containing N-protein loaded on AuNP | [48] |
10 | Electro-optical virus analysis | [49] |
11 | Biosensor by using lanthanide-doped polystyrene nanoparticles NPs containing anti-coronavirus -19 Immunoglobuline G COVID-19 IgG based on lateral flow immunoassay | [50] |
12 | Electrochemical sensor based on the diagnosis of reactive oxygen species (ROS) in fresh sputum in real time using electrochemical tracing and shows the correlation between the determination of viral ROS in the epithelium of the lungs and COVID-19 | [51] |
13 | Electrochemical sensor using AuNPs containing S-protein loaded on carbon electrodes | [52] |
14 | Piezoelectric immunosensor | [53] |
15 | Acoustic sensor based on the slot mode in an acoustic delay line | This article |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guliy, O.; Zaitsev, B.; Teplykh, A.; Balashov, S.; Fomin, A.; Staroverov, S.; Borodina, I. Acoustical Slot Mode Sensor for the Rapid Coronaviruses Detection. Sensors 2021, 21, 1822. https://doi.org/10.3390/s21051822
Guliy O, Zaitsev B, Teplykh A, Balashov S, Fomin A, Staroverov S, Borodina I. Acoustical Slot Mode Sensor for the Rapid Coronaviruses Detection. Sensors. 2021; 21(5):1822. https://doi.org/10.3390/s21051822
Chicago/Turabian StyleGuliy, Olga, Boris Zaitsev, Andrey Teplykh, Sergey Balashov, Alexander Fomin, Sergey Staroverov, and Irina Borodina. 2021. "Acoustical Slot Mode Sensor for the Rapid Coronaviruses Detection" Sensors 21, no. 5: 1822. https://doi.org/10.3390/s21051822
APA StyleGuliy, O., Zaitsev, B., Teplykh, A., Balashov, S., Fomin, A., Staroverov, S., & Borodina, I. (2021). Acoustical Slot Mode Sensor for the Rapid Coronaviruses Detection. Sensors, 21(5), 1822. https://doi.org/10.3390/s21051822