The Optimal Selection of Mother Wavelet Function and Decomposition Level for Denoising of DCG Signal
Abstract
:1. Introduction
- The optimal selection of the mother wavelet function and the decomposition level for the DCG (Doppler cardiogram) is introduced in this study;
- The optimal wavelet decomposition level is predicted based on the distribution of the signal components in frequency domain;
- The new criterion is suggested to evaluate both the denoising performance and the denoising efficiency in once.
2. Materials and Methods
2.1. Wavelet Transform
2.2. Doppler Cardiogram Signal Dataset and Recording Procedure
2.3. Evalution Measures
3. Experiment
3.1. Additive White Gaussian Noise
3.2. Denoising Process with Wavelet Transform and Thresholding
- Wavelet DecompositionSelect the decomposition level and the mother wavelet function . Produce the wavelet coefficients through discrete wavelet transform with these two factors.
- ThresholdingSet the threshold value, which is calculated by the wavelet coefficients. Threshold the decomposed wavelet coefficients.
- Wavelet ReconstructionReconstruct the wavelet coefficients after thresholding using and .
3.3. The Process of the Optimal Selection of the Mother Wavelet Function and the Decomposition Level
4. Result
4.1. Wavelet Decomposition Level Prediction
4.2. Most Efficient Mother Wavelet Selection
4.3. Optimal Decomposition Level
5. Discussions
6. Conclusions
- The wavelet length of the mother wavelet function was the important element for the selection of the most efficient mother wavelet. The longer mother wavelet function did not provide a better denoising performance. As the longer wavelet function requires more performance complexity, the optimal wavelet length for the performance efficiency should be considered;
- The optimal decomposition level was determined by the sampling frequency and dominant frequency range of the original signal. The level that could decompose the dominant frequency range from the signal was the optimal decomposition level. For this reason, the optimal decomposition level could be predicted based on the signal analysis in the frequency domain. The appropriate decomposition level produced a modest threshold value for noise removal;
- The higher the sampling frequency of the DCG signal, the more powerful the performance of the denoising process. The higher sampling frequency enabled the signal to obtain more useful components.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Naghavi, M.; Allen, C.; Barber, R.M.; Bhutta, Z.A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coates, M.M.; Coggeshall, M.; et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1459–1544. [Google Scholar] [CrossRef] [Green Version]
- Deng, M.; Wang, C.; Tang, M.; Zheng, T. Extracting cardiac dynamics within ECG signal for human identification and cardiovascular diseases classification. Neural Netw. 2018, 100, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Nemati, E.; Deen, M.J.; Mondal, T. A wireless wearable ECG sensor for long-term applications. IEEE Commun. Mag. 2012, 50, 36–43. [Google Scholar] [CrossRef]
- Pani, D.; Achilli, A.; Bassareo, P.P.; Cugusi, L.; Mercuro, G.; Fraboni, B.; Bonfiglio, A. Fully: Textile polymer: Based ECG electrodes: Overcoming the limits of metal: Based textiles. In Proceedings of the 2016 Computing in Cardiology Conference (CinC); Computing in Cardiology, Vancouver, BC, Canada, 11–14 September 2016; pp. 373–376. [Google Scholar]
- Castro, I.D.; Mercuri, M.; Torfs, T.; Lorato, I.; Puers, R.; Van Hoof, C. Sensor Fusion of Capacitively Coupled ECG and Continuous-Wave Doppler Radar for Improved Unobtrusive Heart Rate Measurements. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 8, 316–328. [Google Scholar] [CrossRef]
- Lu, L.; Li, C.; Lie, D.Y.C. Experimental demonstration of noncontact pulse wave velocity monitoring using multiple Doppler radar sensors. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Piscataway, NJ, USA, 31 August–4 September 2010; Volume 2010, pp. 5010–5013. [Google Scholar]
- Mogi, E.; Ohtsuki, T. Heartbeat detection with Doppler sensor using adaptive scale factor selection on learning. In Proceedings of the 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, China, 30 August–2 September 2015; pp. 2166–2170. [Google Scholar]
- Choi, C.; Park, J.; Lee, H.; Yang, J. Heartbeat detection using a Doppler radar sensor based on the scaling function of wavelet transform. Microw. Opt. Technol. Lett. 2019, 61, 1792–1796. [Google Scholar] [CrossRef]
- Hu, W.; Zhao, Z.; Wang, Y.; Zhang, H.; Lin, F. Noncontact Accurate Measurement of Cardiopulmonary Activity Using a Compact Quadrature Doppler Radar Sensor. IEEE Trans. Biomed. Eng. 2013, 61, 725–735. [Google Scholar] [CrossRef]
- Du, L.; Wang, B.; Wang, P.; Ma, Y.; Liu, H. Noise Reduction Method Based on Principal Component Analysis With Beta Process for Micro-Doppler Radar Signatures. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2015, 8, 4028–4040. [Google Scholar] [CrossRef]
- Lee, Y.S.; Pathirana, P.N.; Steinfort, C.L.; Caelli, T. Monitoring and Analysis of Respiratory Patterns Using Microwave Doppler Radar. IEEE J. Transl. Eng. Health Med. 2014, 2, 1–12. [Google Scholar] [CrossRef]
- Li, C.; Lubecke, V.M.; Boric-Lubecke, O.; Lin, J. A Review on Recent Advances in Doppler Radar Sensors for Noncontact Healthcare Monitoring. IEEE Trans. Microw. Theory Tech. 2013, 61, 2046–2060. [Google Scholar] [CrossRef]
- Mogi, E.; Ohtsuki, T. Heartbeat detection with Doppler radar based on spectrogram. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6. [Google Scholar]
- Rahman, A.; Yavari, E.; Gao, X.; Lubecke, V.; Boric-Lubecke, O. Signal processing techniques for vital sign monitoring using mobile short range doppler radar. In Proceedings of the 2015 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), San Diego, CA, USA, 25–28 January 2015; pp. 1–3. [Google Scholar]
- Chervyakov, N.; Lyakhov, P.; Kaplun, D.; Butusov, D.; Nagornov, N. Analysis of the Quantization Noise in Discrete Wavelet Transform Filters for Image Processing. Electronics 2018, 7, 135. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, A.; Oppenheim, G. Wavelets and Statistics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 103. [Google Scholar]
- Kovacevic, J.; Goyal, V.K.; Vetterli, M. Fourier and wavelet signal processing. Fourier Wavelets.org. 2013, pp. 1–294. Available online: http://www.fourierandwavelets.org/FWSP_a3.2_2013.pdf (accessed on 3 March 2021).
- Rafiee, J.; Rafiee, M.; Prause, N.; Schoen, M. Wavelet basis functions in biomedical signal processing. Expert Syst. Appl. 2011, 38, 6190–6201. [Google Scholar] [CrossRef]
- Young, R.K. Wavelet Theory and Its Applications; Springer International Publishing: Berlin/Heidelberg, Germany, 1993; Volume 189. [Google Scholar]
- Rai, H.M.; Trivedi, A.; Shukla, S. ECG signal processing for abnormalities detection using multi-resolution wavelet transform and Artificial Neural Network classifier. Measurement 2013, 46, 3238–3246. [Google Scholar] [CrossRef]
- Krishnaveni, V.; Jayaraman, S.; Aravind, S.; Hariharasudhan, V.; Ramadoss, K. Automatic Identification and Removal of Ocular Artifacts from EEG using Wavelet Transform. Meas. Sci. Rev. 2006, 6, 45–57. [Google Scholar]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Percival, D.B.; Walden, A.T. Wavelet Methods for Time Series Analysis; Cambridge University Press: Cambridge, UK, 2000; Volume 4. [Google Scholar]
- Jansen, M.; Bultheel, A. Asymptotic behavior of the minimum mean squared error threshold for noisy wavelet coefficients of piecewise smooth signals. IEEE Trans. Signal Process. 2001, 49, 1113–1118. [Google Scholar] [CrossRef]
- Jansen, M.M. Minimum risk thresholds for data with heavy noise. IEEE Signal Process. Lett. 2006, 13, 296–299. [Google Scholar] [CrossRef]
- Al-Qazzaz, N.K.; Ali, S.H.B.M.; Ahmad, S.A.; Islam, M.S.; Escudero, J. Selection of Mother Wavelet Functions for Multi-Channel EEG Signal Analysis during a Working Memory Task. Sensors 2015, 15, 29015–29035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sang, Y.-F.; Wang, D.; Wu, J.-C. Entropy-Based Method of Choosing the Decomposition Level in Wavelet Threshold De-noising. Entropy 2010, 12, 1499–1513. [Google Scholar] [CrossRef]
- Engin, E.Z.; Arslan, Ö. Selection of Optimum Mother Wavelet Function for Turkish Phonemes. Int. J. Appl. Math. Electron. Comput. 2019, 7, 56–64. [Google Scholar] [CrossRef]
- Bhatia, P.; Boudy, J.; Andreão, R. Wavelet transformation and pre-selection of mother wavelets for ECG signal processing. In Proceedings of the 24th IASTED International Conference on Biomedical Engineering, Innsbruck, Austria, 15–17 February 2006; pp. 390–395. [Google Scholar]
- Castillo, E.; Morales, D.P.; García, A.; Martínez-Martí, F.; Parrilla, L.; Palma, A.J. Noise Suppression in ECG Signals through Efficient One-Step Wavelet Processing Techniques. J. Appl. Math. 2013, 2013, 1–13. [Google Scholar] [CrossRef]
- Li, F.; Meng, G.; Kageyama, K.; Su, Z.; Ye, L. Optimal Mother Wavelet Selection for Lamb Wave Analyses. J. Intell. Mater. Syst. Struct. 2009, 20, 1147–1161. [Google Scholar] [CrossRef]
- Dan, G.; Li, Z.; Ding, H. A Mother Wavelet Selection Algorithm for Respiratory Rate Estimation from Photoplethysmogram. In Proceedings of the 26th Brazilian Congress on Biomedical Engineering, Vitoria, Brazil, 26–30 October 2015; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; Volume 51, pp. 962–965. [Google Scholar]
- Saraswathy, J.; Hariharan, M.; Nadarajaw, T.; Khairunizam, W.; Yaacob, S. Optimal selection of mother wavelet for accurate infant cry classification. Australas. Phys. Eng. Sci. Med. 2014, 37, 439–456. [Google Scholar] [CrossRef]
- Strömbergsson, D.; Marklund, P.; Berglund, K.; Saari, J.; Thomson, A. Mother wavelet selection in the discrete wavelet transform for condition monitoring of wind turbine drivetrain bearings. Wind. Energy 2019, 22, 1581–1592. [Google Scholar] [CrossRef]
- Xu, X.; Luo, M.; Tan, Z.; Pei, R. Echo signal extraction method of laser radar based on improved singular value decomposition and wavelet threshold denoising. Infrared Phys. Technol. 2018, 92, 327–335. [Google Scholar] [CrossRef]
- Srivastava, M.; Anderson, C.L.; Freed, J.H. A New Wavelet Denoising Method for Selecting Decomposition Levels and Noise Thresholds. IEEE Access 2016, 4, 3862–3877. [Google Scholar] [CrossRef] [PubMed]
- Adeli, H.; Zhou, Z.; Dadmehr, N. Analysis of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Methods 2003, 123, 69–87. [Google Scholar] [CrossRef]
- Mallat, S. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef] [Green Version]
- Soman, K.; Ramachandran, K. Insight into Wavelets: From Theory to Practice; PHI Learning Ltd.: New Delhi, India, 2010. [Google Scholar]
- Parameswariah, C.; Cox, M. Frequency characteristics of wavelets. IEEE Trans. Power Deliv. 2002, 17, 800–804. [Google Scholar] [CrossRef]
- Sanei, S.; Chambers, J.A. EEG Signal Processing; John Wiley & Sons: Toronto, ON, Canada, 2013. [Google Scholar]
- Rao, R. Wavelet Transforms. Encycl. Imaging Sci. Technol. 2002. [Google Scholar] [CrossRef]
- Park, J.-H.; Yang, J.-R. Multiphase Continuous-Wave Doppler Radar With Multiarc Circle Fitting Algorithm for Small Periodic Displacement Measurement. IEEE Trans. Microw. Theory Tech. 2020, 1. [Google Scholar] [CrossRef]
- Tan, H.R.; Tan, A.; Khong, P.; Mok, V. Best Wavelet Function Identification System for ECG signal denoise applications. In Proceedings of the 2007 International Conference on Intelligent and Advanced Systems, Kuala Lumpur, Malaysia, 25–28 November 2007; pp. 631–634. [Google Scholar]
- Stantic, D.; Jo, J. Selection of Optimal Parameters for ECG Signal Smoothing and Baseline Drift Removal. Comput. Inf. Sci. 2014, 7, 99. [Google Scholar] [CrossRef] [Green Version]
- Bangerter, N.K.; Hargreaves, B.A.; Vasanawala, S.S.; Pauly, J.M.; Gold, G.E.; Nishimura, D.G. Analysis of multiple-acquisition SSFP. Magn. Reson. Med. 2004, 51, 1038–1047. [Google Scholar] [CrossRef]
- Ali, M.N.; El-Dahshan, E.-S.A.; Yahia, A.H. Denoising of Heart Sound Signals Using Discrete Wavelet Transform. Circuits Syst. Signal. Process. 2017, 36, 4482–4497. [Google Scholar] [CrossRef]
- Jondral, F.K. White Gaussian Noise—Models for Engineers. Frequenz 2017, 72, 293–299. [Google Scholar] [CrossRef]
- He, H.; Tan, Y.; Wang, Y. Optimal Base Wavelet Selection for ECG Noise Reduction Using a Comprehensive Entropy Criterion. Entropy 2015, 17, 6093–6109. [Google Scholar] [CrossRef] [Green Version]
- Boyat, A.K.; Joshi, B.K. A Review Paper: Noise Models in Digital Image Processing. Signal. Image Process. Int. J. 2015, 6, 63–75. [Google Scholar] [CrossRef]
- Donoho, D. De-noising by soft-thresholding. IEEE Trans. Inf. Theory 1995, 41, 613–627. [Google Scholar] [CrossRef] [Green Version]
- Elshorbagy, A.; Simonovic, S.; Panu, U. Noise reduction in chaotic hydrologic time series: Facts and doubts. J. Hydrol. 2002, 256, 147–165. [Google Scholar] [CrossRef]
- Natarajan, B. Filtering random noise from deterministic signals via data compression. IEEE Trans. Signal. Process. 1995, 43, 2595–2605. [Google Scholar] [CrossRef]
- Addison, P.S. Wavelet transforms and the ECG: A review. Physiol. Meas. 2005, 26, R155–R199. [Google Scholar] [CrossRef] [Green Version]
- Gacek, A.; Pedrycz, W. ECG Signal Processing, Classification and Interpretation: A Comprehensive Framework of Computational Intelligence; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Stéphane, M. A Wavelet Tour of Signal Processing; Elsevier: San Diego, CA, USA, 2009. [Google Scholar] [CrossRef]
- Johnstone, I.M.; Ilverman, B.W.S. Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences. Ann. Stat. 2004, 32, 1594–1649. [Google Scholar] [CrossRef] [Green Version]
- Cai, T.T. On block thresholding in wavelet regression: Adaptivity, block size, and threshold level. Stat. Sin. 2002, 12, 1241–1273. [Google Scholar]
- Donoho, D.L.; Johnstone, I.M. Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 1995, 90, 1200–1224. [Google Scholar] [CrossRef]
- Donoho, D.L.; Johnstone, I.M. Minimax estimation via wavelet shrinkage. Ann. Stat. 1998, 26, 879–921. [Google Scholar] [CrossRef]
- Zhang, X.-P.; Desai, M.D. Adaptive denoising based on SURE risk. IEEE Signal. Process. Lett. 1998, 5, 265–267. [Google Scholar] [CrossRef]
- Poornachandra, S. Wavelet-based denoising using subband dependent threshold for ECG signals. Digit. Signal. Process. 2008, 18, 49–55. [Google Scholar] [CrossRef]
- Reddy, G.U.; Muralidhar, M.; Varadarajan, S. ECG De-Noising using improved thresholding based on Wavelet transforms. Int. J. Comput. Sci. Netw. Secur. 2009, 9, 221–225. [Google Scholar]
- He, C.; Xing, J.; Li, J.; Yang, Q.; Wang, R. A New Wavelet Threshold Determination Method Considering Interscale Correlation in Signal Denoising. Math. Probl. Eng. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Poornachandra, S.; Kumaravel, N. A novel method for the elimination of power line frequency in ECG signal using hyper shrinkage function. Digit. Signal. Process. 2008, 18, 116–126. [Google Scholar] [CrossRef]
- Huimin, C.; Ruimei, Z.; Yanli, H. Improved Threshold Denoising Method Based on Wavelet Transform. Phys. Procedia 2012, 33, 1354–1359. [Google Scholar] [CrossRef] [Green Version]
- Donoho, D.L.; Johnstone, J.M. Ideal spatial adaptation by wavelet shrinkage. Biometrika 1994, 81, 425–455. [Google Scholar] [CrossRef]
- Bilgin, S.; Colak, O.H.; Koklukaya, E.; Arı, N.; Ari, N. Efficient solution for frequency band decomposition problem using wavelet packet in HRV. Digit. Signal. Process. 2008, 18, 892–899. [Google Scholar] [CrossRef]
- Rafiee, J.; Schoen, M.; Prause, N.; Urfer, A.; Rafiee, M. A comparison of forearm EMG and psychophysical EEG signals using statistical signal processing. In Proceedings of the 2009 2nd International Conference on Computer, Control and Communication, Karachi, Pakistan, 17–18 February 2009; pp. 1–5. [Google Scholar]
- Khanam, R.; Ahmad, S.N. Selection of wavelets for evaluating SNR, PRD and CR of ECG signal. Int. J. Eng. Sci. Innov. Technol 2013, 2, 112–119. [Google Scholar]
- Ngui, W.K.; Leong, M.S.; Hee, L.M.; Abdelrhman, A.M. Wavelet Analysis: Mother Wavelet Selection Methods. Appl. Mech. Mater. 2013, 393, 953–958. [Google Scholar] [CrossRef]
- Thatiparthi, S.; Gudheti, R.; Sourirajan, V. MST Radar Signal Processing Using Wavelet-Based Denoising. IEEE Geosci. Remote. Sens. Lett. 2009, 6, 752–756. [Google Scholar] [CrossRef]
- Rock, J.; Toth, M.; Messner, E.; Meissner, P.; Pernkopf, F. Complex signal denoising and interference mitigation for automotive radar using convolutional neural networks. In Proceedings of the 2019 22th International Conference on Information Fusion (FUSION), Ottawa, ON, Canada, 2–5 July 2019; pp. 1–8. [Google Scholar]
- Hua, T.; Dai, K.; Zhang, X.; Yao, Z.; Wang, H.; Xie, K.; Feng, T.; Zhang, H. Optimal VMD-Based Signal Denoising for Laser Radar via Hausdorff Distance and Wavelet Transform. IEEE Access 2019, 7, 167997–168010. [Google Scholar] [CrossRef]
Demographic and Clinical Features | Control |
---|---|
Number | 11 |
Age | 24.08 ± 2.35 |
Female/Male | 6 F/5 M |
Algorithm Step |
---|
|
|
|
|
|
3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|
18 | 3.5903 | 4.0369 | 4.4724 | 4.9091 | 5.0815 | 3.7178 |
24 | 3.5252 | 3.9538 | 4.3936 | 4.8243 | 5.1840 | 3.6898 |
30 | 3.4757 | 3.8981 | 4.3334 | 4.7615 | 5.1429 | 3.6670 |
3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|
18 | 3.5902 | 4.0328 | 4.4719 | 4.9322 | 5.2873 | 3.7658 |
20 | 3.5671 | 4.0081 | 4.4414 | 4.8843 | 5.2838 | 3.7557 |
22 | 3.5439 | 3.9737 | 4.4199 | 4.8498 | 5.2496 | 3.7590 |
3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|
18 | 3.5910 | 4.0327 | 4.4659 | 4.8763 | 4.9468 | 3.8317 |
22 | 3.5438 | 3.9782 | 4.4147 | 4.8194 | 4.9721 | 3.8463 |
3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|
18 | 3.5894 | 4.0377 | 4.4704 | 4.9072 | 5.1879 | 3.7663 |
20 | 3.5521 | 3.9645 | 4.3828 | 4.7759 | 4.8445 | 3.8774 |
3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|
18 | 3.5867 | 4.0361 | 4.4688 | 4.9040 | 5.1384 | 3.4258 |
20 | 3.5602 | 3.9910 | 4.4374 | 4.8952 | 4.9568 | 3.0319 |
3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|
18 | 3.5914 | 4.0267 | 4.4733 | 4.9256 | 5.3099 | 3.7781 |
20 | 3.5657 | 4.0102 | 4.4428 | 4.8765 | 5.2783 | 3.7603 |
22 | 3.5450 | 3.9741 | 4.4176 | 4.8723 | 5.2523 | 3.7297 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, Y.I.; Sim, J.Y.; Yang, J.-R.; Kwon, N.K. The Optimal Selection of Mother Wavelet Function and Decomposition Level for Denoising of DCG Signal. Sensors 2021, 21, 1851. https://doi.org/10.3390/s21051851
Jang YI, Sim JY, Yang J-R, Kwon NK. The Optimal Selection of Mother Wavelet Function and Decomposition Level for Denoising of DCG Signal. Sensors. 2021; 21(5):1851. https://doi.org/10.3390/s21051851
Chicago/Turabian StyleJang, Young In, Jae Young Sim, Jong-Ryul Yang, and Nam Kyu Kwon. 2021. "The Optimal Selection of Mother Wavelet Function and Decomposition Level for Denoising of DCG Signal" Sensors 21, no. 5: 1851. https://doi.org/10.3390/s21051851
APA StyleJang, Y. I., Sim, J. Y., Yang, J. -R., & Kwon, N. K. (2021). The Optimal Selection of Mother Wavelet Function and Decomposition Level for Denoising of DCG Signal. Sensors, 21(5), 1851. https://doi.org/10.3390/s21051851