A Hand-Worn Inertial Measurement Unit for Detection of Bat–Ball Impact during Baseball Hitting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instrumental Setup
2.3. Data Collection during In-Field Hitting
2.4. Calculation of the Trunk and Hand Kinematics
2.5. Impact-Detection Algorithm
2.6. Impact-Time Validation
2.7. Statistical Analysis
3. Results
3.1. Deviation of the Kinematic Parameters from Impact
3.2. Impact-Time Error
4. Discussion
4.1. Accuracy of Bat–Ball Impact Timing
4.2. Hand Acceleration Caused by Impact Force
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Welch, C.M.; Banks, S.A.; Cook, F.F.; Draovitch, P. Hitting a baseball: A biomechanical description. J. Orthop. Sports Phys. Ther. 1995, 22, 193–201. [Google Scholar] [CrossRef]
- Katsumata, H. A functional modulation for timing a movement: A coordinative structure in baseball hitting. Hum. Mov. Sci. 2007, 26, 27–47. [Google Scholar] [CrossRef]
- Inkster, B.; Murphy, A.; Bower, R.; Watsford, M. Differences in the kinematics of the baseball swing between hitters of varying skill. Med. Sci. Sports Exerc. 2011, 43, 1050–1054. [Google Scholar] [CrossRef]
- Katsumata, H.; Himi, K.; Ino, T.; Ogawa, K.; Matsumoto, T. Coordination of hitting movement revealed in baseball tee-batting. J. Sports Sci. 2017, 35, 2468–2480. [Google Scholar] [CrossRef] [PubMed]
- Dowling, B.; Fleisig, G.S. Kinematic comparison of baseball batting off of a tee among various competition levels. Sports Biomech. 2016, 15, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Ae, K.; Koike, S.; Kawamura, T. Kinetic function of the lower limbs during baseball tee-batting motion at different hitting-point heights. Sports Biomech. 2018, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Boddy, K.J.; Marsh, J.A.; Caravan, A.; Lindley, K.E.; Scheffey, J.O.; O’connell, M.E. Exploring wearable sensors as an alternative to marker-based motion capture in the pitching delivery. PeerJ 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Poitras, I.; Dupuis, F.; Bielmann, M.; Campeau-Lecours, A.; Mercier, C.; Bouyer, L.; Roy, J.-S. Validity and Reliability of Wearable Sensors for Joint Angle Estimation: A Systematic Review. Sensors 2019, 19, 1555. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, N.P.; Yeung, T.; Bobbert, M.F.; Besier, T.F. 3D trunk orientation measured using inertial measurement units during anatomical and dynamic sports motions. Scand. J. Med. Sci. Sports 2020, 31, 358–370. [Google Scholar] [CrossRef]
- Punchihewa, N.G.; Miyazaki, S.; Chosa, E.; Yamako, G. Efficacy of Inertial Measurement Units in the Evaluation of Trunk and Hand Kinematics in Baseball Hitting. Sensors 2020, 20, 7331. [Google Scholar] [CrossRef]
- Fortenbaugh, D.; Fleisig, G.; Onar-Thomas, A.; Asfour, S. The effect of pitch type on ground reaction forces in the baseball swing. Sports Biomech. 2011, 10, 270–279. [Google Scholar] [CrossRef]
- Fleisig, G.S.; Hsu, W.K.; Fortenbaugh, D.; Cordover, A.; Press, J.M. Trunk axial rotation in baseball pitching and batting. Sports Biomech. 2013, 12, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Laughlin, W.A.; Fleisig, G.S.; Aune, K.T.; Diffendaffer, A.Z. The effects of baseball bat mass properties on swing mechanics, ground reaction forces, and swing timing. Sports Biomech. 2016, 15, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Van Zandt, L.L. The dynamical theory of the baseball bat. Am. J. Phys. 1992, 60, 172–181. [Google Scholar] [CrossRef]
- Tabuchi, N.; Matsuo, T.; Hashizume, K. Bat speed, trajectory, and timing for collegiate baseball batters hitting a stationary ball. Sports Biomech. 2007, 6, 17–30. [Google Scholar] [CrossRef]
- Escamilla, R.F.; Fleisig, G.S.; DeRenne, C.; Taylor, M.K.; Moorman, C.T.; Imamura, R.; Barakatt, E.; Andrews, J.R. A comparison of age level on baseball hitting kinematics. J. Appl. Biomech. 2009, 25, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Ae, K.; Koike, S.; Fujii, N.; Ae, M.; Kawamura, T.; Kanahori, T. A comparison of kinetics in the lower limbs between baseball tee and pitched ball batting. Hum. Mov. Sci. 2018, 61, 126–134. [Google Scholar] [CrossRef]
- Punchihewa, N.G.; Yamako, G.; Fukao, Y.; Chosa, E. Identification of key events in baseball hitting using inertial measurement units. J. Biomech. 2019, 87, 157–160. [Google Scholar] [CrossRef]
- Greenwald, R.M.; Penna, L.H.; Crisco, J.J. Differences in batted ball speed with wood and aluminum baseball bats: A batting cage study. J. Appl. Biomech. 2001, 17, 241–252. [Google Scholar] [CrossRef]
- Madgwick, S.O.H.; Harrison, A.J.L.; Vaidyanathan, R. Estimation of IMU and MARG orientation using a gradient descent algorithm. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; Volume 2011, pp. 1–7. [Google Scholar]
- Vargas-Valencia, L.S.; Elias, A.; Rocon, E.; Bastos-Filho, T.; Frizera, A. An IMU-to-Body Alignment Method Applied to Human Gait Analysis. Sensors 2016, 16, 2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cross, R. Impact of a ball with a bat or racket. Am. J. Phys. 1999, 67, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Nathan, A.M. Dynamics of the baseball-bat collision. Am. J. Phys. 2000, 68, 979–990. [Google Scholar] [CrossRef]
- Nicholls, R.L.; Miller, K.; Elliott, B.C. Numerical analysis of maximal bat performance in baseball. J. Biomech. 2006, 39, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- Cochran, W.G. Errors of Measurement in Statistics. Technometrics 1968, 10, 637–666. [Google Scholar] [CrossRef]
- Cross, R. The sweet spot of a baseball bat. Am. J. Phys. 1998, 66, 772–779. [Google Scholar] [CrossRef]
- King, K.; Hough, J.; McGinnis, R.; Perkins, N.C. A new technology for resolving the dynamics of a swinging bat. Sport. Eng. 2012, 15, 41–52. [Google Scholar] [CrossRef]
Bat Type | Hitting Session | Mean (SD) | RMSE |
---|---|---|---|
Aluminum | Pitched | 1.1 (±0.8) | 1.3 |
Tee | 1.2 (±0.6) | 1.4 | |
All | 1.1 (±0.7) | 1.3 | |
Wood | Pitched | 1.2 (±0.8) | 1.4 |
Tee | 1.3 (±1.0) | 1.6 | |
All | 1.2 (±0.9) | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Punchihewa, N.G.; Arakawa, H.; Chosa, E.; Yamako, G. A Hand-Worn Inertial Measurement Unit for Detection of Bat–Ball Impact during Baseball Hitting. Sensors 2021, 21, 3002. https://doi.org/10.3390/s21093002
Punchihewa NG, Arakawa H, Chosa E, Yamako G. A Hand-Worn Inertial Measurement Unit for Detection of Bat–Ball Impact during Baseball Hitting. Sensors. 2021; 21(9):3002. https://doi.org/10.3390/s21093002
Chicago/Turabian StylePunchihewa, Niroshan G., Hideki Arakawa, Etsuo Chosa, and Go Yamako. 2021. "A Hand-Worn Inertial Measurement Unit for Detection of Bat–Ball Impact during Baseball Hitting" Sensors 21, no. 9: 3002. https://doi.org/10.3390/s21093002
APA StylePunchihewa, N. G., Arakawa, H., Chosa, E., & Yamako, G. (2021). A Hand-Worn Inertial Measurement Unit for Detection of Bat–Ball Impact during Baseball Hitting. Sensors, 21(9), 3002. https://doi.org/10.3390/s21093002