Energy Conservation for Internet of Things Tracking Applications Using Deep Reinforcement Learning
Abstract
:1. Introduction
2. Related Work
2.1. Tracking Application Based on Information-Driven Approaches
2.2. Machine Learning-Based Techniques for Tracking Application
2.2.1. Unsupervised Learning-based Clustering Approaches
2.2.2. Reinforcement Learning Approaches
3. Preliminaries
3.1. System Overview
3.2. Kalman Filter
3.3. Best Sensor Selection
3.4. Reinforcement Learning (RL)
3.5. Deep-Q-Network
4. The Proposed LSTM-DQN-Epsilon-Greedy Method
4.1. Long Short-Term Memory-Based Q-approximator
4.2. Mini-Max Normalization-Based State Space
4.3. Epsilon-Greedy Discrete Action Space
4.4. Binary-Based Reward Space
Algorithm 1: The proposed LSTM-DQN-epsilon-greedy algorithm. |
5. Simulation and Results
5.1. Environment Setup, Hyper Parameters, and Evaluation Metrics
5.2. Results
5.2.1. Cumulative Rewards
5.2.2. Best Sensor Selection Accuracy
5.3. Comparative Analysis
5.3.1. Average Cumulative Reward
5.3.2. Loss Convergence
5.3.3. Average Best Sensor Selection Accuracy
5.3.4. Average Cumulative Energy Consumption
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Da Xu, L.; Zhao, S. 5G Internet of Things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Farhad, A.; Kim, D.H.; Subedi, S.; Pyun, J.Y. Enhanced LoRaWAN Adaptive Data Rate for Mobile Internet of Things Devices. Sensors 2020, 20, 6466. [Google Scholar] [CrossRef] [PubMed]
- Mihovska, A.; Sarkar, M. Smart Connectivity for Internet of Things (IoT) Applications. In New Advances in the Internet of Things; Springer: Berlin/Heidelberg, Germany, 2018; Volume 715, pp. 105–118. [Google Scholar] [CrossRef] [Green Version]
- Farhad, A.; Kim, D.H.; Kim, B.H.; Mohammed, A.F.Y.; Pyun, J.Y. Mobility-Aware Resource Assignment to IoT Applications in Long-Range Wide Area Networks. IEEE Access 2020, 8, 186111–186124. [Google Scholar] [CrossRef]
- Cabrera, R.S.; de la Cruz, A.P. Public transport vehicle tracking service for intermediate cities of developing countries, based on ITS architecture using Internet of Things (IoT). In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; IEEE: New York, NY, USA, 2018; pp. 2784–2789. [Google Scholar]
- Raad, M.W.; Deriche, M.; Sheltami, T. An IoT-Based School Bus and Vehicle Tracking System Using RFID Technology and Mobile Data Networks. Arab. J. Sci. Eng. 2021, 46, 3087–3097. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, L.; Yang, Y.; Wu, W.; Chen, Y.; Xu, M. Multi-camera multi-player tracking with deep player identification in sports video. Pattern Recognit. 2020, 102, 107260. [Google Scholar] [CrossRef]
- Karthick, R.; Prabaharan, A.M.; Selvaprasanth, P. Internet of things based high security border surveillance strategy. Asian J. Appl. Sci. Technol. (AJAST) 2019, 3, 94–100. [Google Scholar]
- Zhang, R.; Xu, L.; Yu, Z.; Shi, Y.; Mu, C.; Xu, M. Deep-IRTarget: An Automatic Target Detector in Infrared Imagery using Dual-domain Feature Extraction and Allocation. IEEE Trans. Multimed. 2021, 1. [Google Scholar] [CrossRef]
- Zhang, R.; Mu, C.; Yang, Y.; Xu, L. Research on simulated infrared image utility evaluation using deep representation. J. Electron. Imaging 2018, 27, 013012. [Google Scholar] [CrossRef]
- Ez-Zaidi, A.; Rakrak, S. A comparative Study of Target Tracking Approaches in Wireless Sensor Networks. J. Sens. 2016, 2016, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. Technology Framework of the Internet of Things and its Application. In Proceedings of the 2011 International Conference on Electrical and Control Engineering, Yichang, China, 16–18 September 2011; IEEE: New York, NY, USA, 2011; pp. 4109–4112. [Google Scholar] [CrossRef]
- Kumar, S.; Tiwari, U.K. Energy efficient target tracking with collision avoidance in WSNs. Wirel. Pers. Commun. 2018, 103, 2515–2528. [Google Scholar] [CrossRef]
- Sebastian, B.; Ben-Tzvi, P. Support vector machine based real-time terrain estimation for tracked robots. Mechatronics 2019, 62, 102260. [Google Scholar] [CrossRef]
- Montague, P.R. Reinforcement learning: An introduction, by Sutton, RS and Barto, AG. Trends Cogn. Sci. 1999, 3, 360. [Google Scholar] [CrossRef]
- Wang, D.; Chen, D.; Song, B.; Guizani, N.; Yu, X.; Du, X. From IoT to 5G I-IoT: The next generation IoT-based intelligent algorithms and 5G technologies. IEEE Commun. Mag. 2018, 56, 114–120. [Google Scholar] [CrossRef]
- Lei, L.; Tan, Y.; Zheng, K.; Liu, S.; Zhang, K.; Shen, X. Deep reinforcement learning for autonomous internet of things: Model, applications and challenges. IEEE Commun. Surv. Tutorials 2020, 22, 1722–1760. [Google Scholar] [CrossRef] [Green Version]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.; et al. Human-level Control through Deep Reinforcement Learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Ali Imran, M.; Flávia dos Reis, A.; Brante, G.; Valente Klaine, P.; Demo Souza, R. Machine Learning in Energy Efficiency Optimization. In Machine Learning for Future Wireless Communications; Wiley Online Library: Hoboken, NJ, USA, 2020; pp. 105–117. [Google Scholar] [CrossRef]
- Liu, N.; Li, Z.; Xu, J.; Xu, Z.; Lin, S.; Qiu, Q.; Tang, J.; Wang, Y. A hierarchical framework of cloud resource allocation and power management using deep reinforcement learning. In Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; IEEE: New York, NY, USA, 2017; pp. 372–382. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Wang, Y.; Tang, J.; Wang, J.; Gursoy, M.C. A deep reinforcement learning based framework for power-efficient resource allocation in cloud RANs. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; IEEE: New York, NY, USA, 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Alfian, G.; Syafrudin, M.; Ijaz, M.F.; Syaekhoni, M.A.; Fitriyani, N.L.; Rhee, J. A personalized healthcare monitoring system for diabetic patients by utilizing BLE-based sensors and real-time data processing. Sensors 2018, 18, 2183. [Google Scholar] [CrossRef] [Green Version]
- Ali, G.; Ali, T.; Irfan, M.; Draz, U.; Sohail, M.; Glowacz, A.; Sulowicz, M.; Mielnik, R.; Faheem, Z.B.; Martis, C. IoT Based Smart Parking System Using Deep Long Short Memory Network. Electronics 2020, 9, 1696. [Google Scholar] [CrossRef]
- Nayak, S.; Misra, B.B.; Behera, H.S. Impact of data normalization on stock index forecasting. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 2014, 6, 257–269. [Google Scholar]
- Ali, F.; El-Sappagh, S.; Islam, S.R.; Kwak, D.; Ali, A.; Imran, M.; Kwak, K.S. A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion. Inf. Fusion 2020, 63, 208–222. [Google Scholar] [CrossRef]
- Li, J.; Xing, Z.; Zhang, W.; Lin, Y.; Shu, F. Vehicle Tracking in Wireless Sensor Networks via Deep Reinforcement Learning. IEEE Sensors Lett. 2020, 4, 1–4. [Google Scholar] [CrossRef]
- Ma, H.; Ng, B. Collaborative signal processing framework and algorithms for targets tracking in wireless sensor networks. In Microelectronics: Design, Technology, and Packaging II; International Society for Optics and Photonics: Bellingham, WA, USA, 2006; Volume 6035, p. 60351K. [Google Scholar] [CrossRef]
- Zhao, F.; Shin, J.; Reich, J. Information-driven Dynamic Sensor Collaboration. IEEE Signal Process. Mag. 2002, 19, 61–72. [Google Scholar] [CrossRef]
- Li, W.; Han, C. Dual sensor control scheme for multi-target tracking. Sensors 2018, 18, 1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Ma, L.; Xue, K. Multitarget tracking in sensor networks via efficient information-theoretic sensor selection. Int. J. Adv. Robot. Syst. 2017, 14, 1729881417728466. [Google Scholar] [CrossRef] [Green Version]
- Waleed, M.; Um, T.W.; Kamal, T.; Usman, S.M. Classification of Agriculture Farm Machinery Using Machine Learning and Internet of Things. Symmetry 2021, 13, 403. [Google Scholar] [CrossRef]
- Alsheikh, M.A.; Lin, S.; Niyato, D.; Tan, H.P. Machine learning in wireless sensor networks: Algorithms, strategies, and applications. IEEE Commun. Surv. Tutorials 2014, 16, 1996–2018. [Google Scholar] [CrossRef] [Green Version]
- Lata, S.; Mehfuz, S. Machine Learning based Energy Efficient Wireless Sensor Network. In Proceedings of the 2019 International Conference on Power Electronics, Control and Automation (ICPECA), New Delhi, India, 16–17 November 2019; IEEE: New York, NY, USA, 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Waleed, M.; Um, T.W.; Kamal, T.; Khan, A.; Iqbal, A. Determining the Precise Work Area of Agriculture Machinery Using Internet of Things and Artificial Intelligence. Appl. Sci. 2020, 10, 3365. [Google Scholar] [CrossRef]
- Hosseini, R.; Mirvaziri, H. A New Clustering-Based Approach for Target Tracking to Optimize Energy Consumption in Wireless Sensor Networks. Wirel. Pers. Commun. 2020, 114, 3337–3349. [Google Scholar] [CrossRef]
- Zou, T.; Li, Z.; Li, S.; Lin, S. Adaptive Energy-Efficient Target Detection Based on Mobile Wireless Sensor Networks. Sensors 2017, 17, 1028. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Zhao, H. Energy-Balanced Multisensory Scheduling for Target Tracking in Wireless Sensor Networks. Sensors 2018, 18, 3585. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.I.; Rinner, B. Energy-aware task scheduling in wireless sensor networks based on cooperative reinforcement learning. In Proceedings of the 2014 IEEE International Conference on Communications Workshops (ICC), Sydney, NSW, Australia, 10–14 June 2014; IEEE: New York, NY, USA, 2014; pp. 871–877. [Google Scholar] [CrossRef]
- Zhu, J.; Song, Y.; Jiang, D.; Song, H. A New Deep-Q-learning-based Transmission Scheduling Mechanism for the Cognitive Internet of Things. IEEE Internet Things J. 2017, 5, 2375–2385. [Google Scholar] [CrossRef]
- Mohammadi, M.; Al-Fuqaha, A.; Guizani, M.; Oh, J.S. Semisupervised Deep Reinforcement Learning in Support of IoT and Smart City Services. IEEE Internet Things J. 2017, 5, 624–635. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Bang, H. Introduction to Kalman Filter and its Applications. In Introduction and Implementations of the Kalman Filter; IntechOpen Limited 5 Princes Gate Court: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Li, R.; Ji, K.; Dai, W. Kalman filter and its application. In Proceedings of the 2015 8th International Conference on Intelligent Networks and Intelligent Systems (ICINIS), Tianjin, China, 1–3 November 2015; IEEE: New York, NY, USA, 2015; pp. 74–77. [Google Scholar]
- Akca, A.; Efe, M.O. Multiple model Kalman and Particle filters and applications: A survey. IFAC-PapersOnLine 2019, 52, 73–78. [Google Scholar] [CrossRef]
- Patel, H.A.; Thakore, D.G. Moving object tracking using kalman filter. Int. J. Comput. Sci. Mob. Comput. 2013, 2, 326–332. [Google Scholar]
- Mahfouz, S.; Mourad-Chehade, F.; Honeine, P.; Farah, J.; Snoussi, H. Target tracking using machine learning and Kalman filter in wireless sensor networks. IEEE Sens. J. 2014, 14, 3715–3725. [Google Scholar] [CrossRef] [Green Version]
- Gunjal, P.R.; Gunjal, B.R.; Shinde, H.A.; Vanam, S.M.; Aher, S.S. Moving object tracking using kalman filter. In Proceedings of the 2018 International Conference On Advances in Communication and Computing Technology (ICACCT), Sangamner, India, 8–9 February 2018; IEEE: New York, NY, USA, 2018; pp. 544–547. [Google Scholar]
- Nguyen, H.; La, H. Review of deep reinforcement learning for robot manipulation. In Proceedings of the 2019 Third IEEE International Conference on Robotic Computing (IRC), Naples, Italy, 25–27 February 2019; IEEE: New York, NY, USA, 2019; pp. 590–595. [Google Scholar] [CrossRef]
- Rossum, G.V. Python. 1991. Available online: https://www.python.org/ (accessed on 12 March 2020).
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. Tensorflow. 2015. Available online: https://www.tensorflow.org/ (accessed on 15 April 2020).
- Chollet, F. Keras. 2015. Available online: https://keras.io/ (accessed on 15 April 2020).
Study | RL-Based Methods | Action-Selection | Solution | Evaluation Metrics |
---|---|---|---|---|
[39] | SARSA () | epsilon-greedy | sensor scheduling | energy consumption |
[40] | Q-table with stacked autoencoder | epsilon-greedy | transmission scheduling | average power consumption and system utility |
[27] | DQN, DDPG with LSTM | epsilon-greedy and softmax | radius adjustment of the activated area | average cumulative rewards and energy consumption |
Proposed method | LSTM-DQN | epsilon-greedy and softmax | best sensor selection | average cumulative rewards, loss convergence, average best sensor selection accuracy, and average average cumulative energy consumption |
Symbols | Description |
---|---|
Initial state matrix | |
Initial process covariance matrix | |
Previous state matrix | |
Measurement input | |
G | Kalman gain |
Control variable matrix | |
Previous process covariance matrix | |
Predicted noise matrix | |
Process noise matrix | |
Transition matrix | |
Measurement error covariance matrix | |
H, I | Identity matrix |
Parameters | Value |
---|---|
Total number of subareas (N) | 4 |
Size of a subarea () | 200 m × 200 m |
Number of sensors in a subarea () | 4 |
Total number of sensors in 4 subareas | 16 |
Each sensor tracking range | 50 m × 50 m |
Power of sensor in working mode () | 5 watts |
Tracking time of sensor per meter () | 2 s |
Number of target (each subarea) | 1 |
Total number of targets in 4 subareas | 4 |
Targets initial positions | [0, 0]–[200, 200]–[400, 400]–[600, 600] |
Target initial velocity | [0.1 m/s, 0.2 m/s] |
Target initial acceleration | [5 m/s2, 5 m/s2] |
Hyperparameter | Value |
---|---|
Optimizer | adam |
Loss | categorical crossentropy |
Batch Size | 16 |
Size of experience replay memory (E) | 50 |
Learning rate (∂) | 0.001 |
Discount factor () | 0.9 |
Maximum epsilon () | 1 |
Minimum epsilon () | 0.01 |
Epsilon decay () | 0.995 |
Definition | Formula |
---|---|
Cumulative rewards (described in Section 5.2.1) | = |
Best sensor selection accuracy. here, total number of predicted best sensor and total number of predicted wrong sensor (described in Section 5.2.2) | |
Average cumulative reward. here, denotes the episode and , , , and are four system subareas. (described in Section 5.3.1) | |
The categorical crossentropy loss convergence. here, , and s = size of the action space (described in Section 5.3.2) | |
Average best sensor selection accuracy here, D is the total number of sensor (described in Section 5.3.3) | |
Average cumulative energy consumption (described in Section 5.3.4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultan, S.M.; Waleed, M.; Pyun, J.-Y.; Um, T.-W. Energy Conservation for Internet of Things Tracking Applications Using Deep Reinforcement Learning. Sensors 2021, 21, 3261. https://doi.org/10.3390/s21093261
Sultan SM, Waleed M, Pyun J-Y, Um T-W. Energy Conservation for Internet of Things Tracking Applications Using Deep Reinforcement Learning. Sensors. 2021; 21(9):3261. https://doi.org/10.3390/s21093261
Chicago/Turabian StyleSultan, Salman Md, Muhammad Waleed, Jae-Young Pyun, and Tai-Won Um. 2021. "Energy Conservation for Internet of Things Tracking Applications Using Deep Reinforcement Learning" Sensors 21, no. 9: 3261. https://doi.org/10.3390/s21093261
APA StyleSultan, S. M., Waleed, M., Pyun, J. -Y., & Um, T. -W. (2021). Energy Conservation for Internet of Things Tracking Applications Using Deep Reinforcement Learning. Sensors, 21(9), 3261. https://doi.org/10.3390/s21093261