Advances in Design Strategies of Multiplex Electrochemical Aptasensors
Abstract
:1. Introduction
2. Multiplex Electrochemical Aptasensors Based on Quantum Dots and Metal Ions
3. Redox-Probe Based Electrochemical Aptasensors for Simultaneous Detection of Multiple Analytes
- (1)
- (2)
4. Enzyme-Based Electrochemical Aptasensors for Simultaneous Multiple Analytes Detection
5. Future Perspectives of Multiplex Electrochemical Aptasensors
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505. [Google Scholar] [CrossRef] [PubMed]
- Ellington, A.D.; Szostak, J.W. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 1992, 355, 850–852. [Google Scholar] [CrossRef]
- Adachi, T.; Nakamura, Y. Aptamers: A Review of Their Chemical Properties and Modifications for Therapeutic Application. Molecules 2019, 24, 4229. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; You, M.; Pu, Y.; Liu, H.; Ye, M.; Tan, W. Recent developments in protein and cell-targeted aptamer selection and applications. Curr. Med. Chem. 2011, 18, 4117–4125. [Google Scholar] [CrossRef] [Green Version]
- Reverdatto, S.; Burz, D.S.; Shekhtman, A. Peptide aptamers: Development and applications. Curr. Top. Med. Chem. 2015, 15, 1082–1101. [Google Scholar] [CrossRef] [Green Version]
- Niu, W.; Jiang, N.; Hu, Y. Detection of proteins based on amino acid sequences by multiple aptamers against tripeptides. Anal. Biochem. 2007, 362, 126–135. [Google Scholar] [CrossRef]
- Mehlhorn, A.; Rahimi, P.; Joseph, Y. Aptamer-Based Biosensors for Antibiotic Detection: A Review. Biosensors 2018, 8, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heydari, M.; Gholoobi, A.; Ranjbar, G.; Rahbar, N.; Sany, S.B.T.; Mobarhan, M.G.; Ferns, G.A.; Rezayi, M. Aptamers as potential recognition elements for detection of vitamins and minerals: A systematic and critical review. Crit. Rev. Clin. Lab. Sci. 2020, 57, 126–144. [Google Scholar] [CrossRef]
- Qu, H.; Csordas, A.T.; Wang, J.; Oh, S.S.; Eisenstein, M.S.; Soh, H.T. Rapid and Label-Free Strategy to Isolate Aptamers for Metal Ions. ACS Nano 2016, 10, 7558–7565. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Wang, Y.; Wang, H.; Wu, L.; Zhang, H.; Song, Y.; Zhu, Z.; Kang, D.; Yang, C. DNA aptamers from whole-cell SELEX as new diagnostic agents against glioblastoma multiforme cells. Analyst 2018, 143, 2267–2275. [Google Scholar] [CrossRef]
- Shin, H.-S.; Gedi, V.; Kim, J.-K.; Lee, D.-K. Detection of Gram-negative bacterial outer membrane vesicles using DNA aptamers. Sci. Rep. 2019, 9, 13167. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Wu, J.; Gu, J.; Shen, L.; Mao, L. Application of Aptamers in Virus Detection and Antiviral Therapy. Front. Microbiol. 2019, 10, 1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, S.; Wang, L.; Li, J.; Fan, C.; Zhao, J. Aptamer-based biosensors. TrAC Trends Anal. Chem. 2008, 27, 108–117. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, P.J.; Ding, J.; Liu, J. Aptamer-based biosensors for biomedical diagnostics. Analyst 2014, 139, 2627–2640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Wen, F.; Zheng, N.; Saive, M.; Fauconnier, M.-L.; Wang, J. Aptamer-Based Biosensor for Detection of Mycotoxins. Front. Chem. 2020, 8, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McConnell, E.M.; Nguyen, J.; Li, Y. Aptamer-Based Biosensors for Environmental Monitoring. Front. Chem. 2020, 8, 434. [Google Scholar] [CrossRef]
- Khan, N.I.; Song, E. Lab-on-a-Chip Systems for Aptamer-Based Biosensing. Micromachines 2020, 11, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarczewska, M.; Górski, Ł.; Malinowska, E. Electrochemical aptamer-based biosensors as potential tools for clinical diagnostics. Anal. Methods 2016, 8, 3861–3877. [Google Scholar] [CrossRef] [Green Version]
- Grabowska, I.; Sharma, N.; Vasilescu, A.; Iancu, M.; Badea, G.; Boukherroub, R.; Ogale, S.; Szunerits, S. Electrochemical Aptamer-Based Biosensors for the Detection of Cardiac Biomarkers. ACS Omega 2018, 3, 12010–12018. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, M.; Dehghani, S.; Nosrati, R.; Zare, H.; Evazalipour, M.; Mosafer, J.; Tehrani, B.S.; Pasdar, A.; Mokhtarzadeh, A.; Ramezani, M. Aptasensors as a new sensing technology developed for the detection of MUC1 mucin: A review. Biosens. Bioelectron. 2019, 130, 1–19. [Google Scholar] [CrossRef]
- Sharma, A.; Bhardwaj, J.; Jang, J. Label-Free, Highly Sensitive Electrochemical Aptasensors Using Polymer-Modified Reduced Graphene Oxide for Cardiac Biomarker Detection. ACS Omega 2020, 5, 3924–3931. [Google Scholar] [CrossRef]
- Zhu, C.; Li, L.; Wang, Z.; Irfan, M.; Qu, F. Recent advances of aptasensors for exosomes detection. Biosens. Bioelectron. 2020, 160, 16. [Google Scholar] [CrossRef]
- Malecka, K.; Ferapontova, E.E. Femtomolar Detection of Thrombin in Serum and Cerebrospinal Fluid via Direct Electrocatalysis of Oxygen Reduction by the Covalent G4-Hemin-Aptamer Complex. ACS Appl. Mater. Interfaces 2021, 13, 37979–37988. [Google Scholar] [CrossRef]
- Gökçe, G.; Ben Aissa, S.; Nemčeková, K.; Catanante, G.; Raouafi, N.; Marty, J.-L. Aptamer-modified pencil graphite electrodes for the impedimetric determination of ochratoxin A. Food Control 2020, 115, 107271. [Google Scholar] [CrossRef]
- Wang, L.; Peng, X.; Fu, H.; Huang, C.; Li, Y.; Liu, Z. Recent advances in the development of electrochemical aptasensors for detection of heavy metals in food. Biosens. Bioelectron. 2020, 147, 111777. [Google Scholar] [CrossRef]
- Yu, Z.; Han, X.; Li, F.; Tan, X.; Shi, W.; Fu, C.; Yan, H.; Zhang, G. Lengthening the aptamer to hybridize with a stem-loop DNA assistant probe for the electrochemical detection of kanamycin with improved sensitivity. Anal. Bioanal. Chem. 2020, 412, 2391–2397. [Google Scholar] [CrossRef]
- Liu, M.; Khan, A.; Wang, Z.; Liu, Y.; Yang, G.; Deng, Y.; He, N. Aptasensors for pesticide detection. Biosens. Bioelectron. 2019, 130, 174–184. [Google Scholar] [CrossRef]
- Rajabnejad, S.-H.; Badibostan, H.; Verdian, A.; Karimi, G.R.; Fooladi, E.; Feizy, J. Aptasensors as promising new tools in bisphenol A detection—An invisible pollution in food and environment. Microchem. J. 2020, 155, 104722. [Google Scholar] [CrossRef]
- Malecka, K.; Mikuła, E.; Ferapontova, E.E. Design Strategies for Electrochemical Aptasensors for Cancer Diagnostic Devices. Sensors 2021, 21, 736. [Google Scholar] [CrossRef]
- Ziółkowski, R.; Jarczewska, M.; Górski, Ł.; Malinowska, E. From Small Molecules toward Whole Cells Detection: Application of Electrochemical Aptasensors in Modern Medical Diagnostics. Sensors 2021, 21, 724. [Google Scholar] [CrossRef]
- Radi, A.-E.; Abd-Ellatief, M.R. Electrochemical Aptasensors: Current Status and Future Perspectives. Diagnostics 2021, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yu, J.; Gui, R.; Jin, H.; Xia, Y. Carbon nanomaterials-based electrochemical aptasensors. Biosens. Bioelectron. 2016, 79, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Evtugyn, G.; Porfireva, A.; Shamagsumova, R.; Hianik, T. Advances in Electrochemical Aptasensors Based on Carbon Nanomaterials. Chemosensors 2020, 8, 96. [Google Scholar] [CrossRef]
- Gaudin, V. Contribution of Nanomaterials to the Development of Electrochemical Aptasensors for the Detection of Antimicrobial Residues in Food Products. Chemosensors 2021, 9, 69. [Google Scholar] [CrossRef]
- Pirzada, M.; Altintas, Z. Nanomaterials for Healthcare Biosensing Applications. Sensors 2019, 19, 5311. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wu, J.T.; Liu, Y.; Qi, X.M.; Jin, H.G.; Yang, C.; Liu, J.; Li, G.L.; He, Q.G. Recent advances in black phosphorus-based electrochemical sensors: A review. Anal. Chim. Acta 2021, 1170, 338480. [Google Scholar] [CrossRef]
- Chen, X.; Jia, X.; Han, J.; Ma, J.; Ma, Z. Electrochemical immunosensor for simultaneous detection of multiplex cancer biomarkers based on graphene nanocomposites. Biosens. Bioelectron. 2013, 50, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Multiplexed Electrochemical Immunosensors for Clinical Biomarkers. Sensors 2017, 17, 965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balaji Viswanath, K.; Krithiga, N.; Jayachitra, A.; Sheik Mideen, A.K.; Amali, A.J.; Vasantha, V.S. Enzyme-Free Multiplex Detection of Pseudomonas aeruginosa and Aeromonas hydrophila with Ferrocene and Thionine-Labeled Antibodies Using ZIF-8/Au NPs as a Platform. ACS Omega 2018, 3, 17010–17022. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Cui, X.; Li, H.; Lu, J.; Kang, Q.; Shen, D. A ratiometric electrochemical sensor for multiplex detection of cancer biomarkers using bismuth as an internal reference and metal sulfide nanoparticles as signal tags. Analyst 2019, 144, 4073–4080. [Google Scholar] [CrossRef]
- Wang, N.; Wang, J.; Zhao, X.; Chen, H.; Xu, H.; Bai, L.; Wang, W.; Yang, H.; Wei, D.; Yuan, B. Highly sensitive electrochemical immunosensor for the simultaneous detection of multiple tumor markers for signal amplification. Talanta 2021, 226, 122133. [Google Scholar] [CrossRef] [PubMed]
- Pakchin, P.S.; Nakhjavani, S.A.; Saber, R.; Ghanbari, H.; Omidi, Y. Recent advances in simultaneous electrochemical multi-analyte sensing platforms. TrAC Trends Anal. Chem. 2017, 92, 32–41. [Google Scholar] [CrossRef]
- Fan, J.; Tang, Y.; Yang, W.; Yu, Y. Disposable multiplexed electrochemical sensors based on electro-triggered selective immobilization of probes for simultaneous detection of DNA and proteins. J. Mater. Chem. B 2020, 8, 7501–7510. [Google Scholar] [CrossRef] [PubMed]
- Pauliukaite, R.; Voitechovič, E. Multisensor Systems and Arrays for Medical Applications Employing Naturally-Occurring Compounds and Materials. Sensors 2020, 20, 3551. [Google Scholar] [CrossRef] [PubMed]
- Zemans, R.L.; Jacobson, S.; Keene, J.; Kechris, K.; Miller, B.E.; Tal-Singer, R.; Bowler, R.P. Multiple biomarkers predict disease severity, progression and mortality in COPD. Respir. Res. 2017, 18, 117. [Google Scholar] [CrossRef] [Green Version]
- Ul-Hassan, Z.; Khan, M.Z.; Khan, A.; Javed, I. Immunological status of the progeny of breeder hens kept on ochratoxin A (OTA)- and aflatoxin B(1) (AFB(1))-contaminated feeds. J. Immunotoxicol. 2012, 9, 381–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, J.A.; Wang, J.; Kawde, A.-N.; Xiang, Y.; Gothelf, K.V.; Collins, G. Quantum-Dot/Aptamer-Based Ultrasensitive Multi-Analyte Electrochemical Biosensor. J. Am. Chem. Soc. 2006, 128, 2228–2229. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, J.; Zhang, S. Electrochemical analysis of two analytes based on a dual-functional aptamer DNA sequence. Chem. Commun. 2010, 46, 595–597. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, B.; Xiang, Y.; Zhang, Y.; Chai, Y.; Yuan, R. Aptamer/quantum dot-based simultaneous electrochemical detection of multiple small molecules. Anal. Chim. Acta 2011, 688, 99–103. [Google Scholar] [CrossRef]
- Yan, Z.; Gan, N.; Wang, D.; Cao, Y.; Chen, M.; Li, T.; Chen, Y. A “signal-on’’ aptasensor for simultaneous detection of chloramphenicol and polychlorinated biphenyls using multi-metal ions encoded nanospherical brushes as tracers. Biosens. Bioelectron. 2015, 74, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Gan, N.; Zhang, H.; Yan, Z.; Li, T.; Chen, Y.; Xu, Q.; Jiang, Q. Electrochemical simultaneous assay of chloramphenicol and PCB72 using magnetic and aptamer-modified quantum dot-encoded dendritic nanotracers for signal amplification. Microchim. Acta 2016, 183, 1099–1106. [Google Scholar] [CrossRef]
- Chen, M.; Gan, N.; Zhou, Y.; Li, T.; Xu, Q.; Cao, Y.; Chen, Y. An electrochemical aptasensor for multiplex antibiotics detection based on metal ions doped nanoscale MOFs as signal tracers and RecJf exonuclease-assisted targets recycling amplification. Talanta 2016, 161, 867–874. [Google Scholar] [CrossRef]
- Xue, J.; Liu, J.; Wang, C.; Tian, Y.; Zhou, N. Simultaneous electrochemical detection of multiple antibiotic residues in milk based on aptamers and quantum dots. Anal. Methods 2016, 8, 1981–1988. [Google Scholar] [CrossRef]
- Yan, Z.; Gan, N.; Li, T.; Cao, Y.; Chen, Y. A sensitive electrochemical aptasensor for multiplex antibiotics detection based on high-capacity magnetic hollow porous nanotracers coupling exonuclease-assisted cascade target recycling. Biosens. Bioelectron. 2016, 78, 51–57. [Google Scholar] [CrossRef]
- Chen, M.; Gan, N.; Zhou, Y.; Li, T.; Xu, Q.; Cao, Y.; Chen, Y. A novel aptamer- metal ions- nanoscale MOF based electrochemical biocodes for multiple antibiotics detection and signal amplification. Sens. Actuators B Chem. 2017, 242, 1201–1209. [Google Scholar] [CrossRef]
- Chen, M.; Gan, N.; Li, T.; Wang, Y.; Xu, Q.; Chen, Y. An electrochemical aptasensor for multiplex antibiotics detection using Y-shaped DNA-based metal ions encoded probes with NMOF substrate and CSRP target-triggered amplification strategy. Anal. Chim. Acta 2017, 968, 30–39. [Google Scholar] [CrossRef]
- Wang, C.; Qian, J.; An, K.; Huang, X.; Zhao, L.; Liu, Q.; Hao, N.; Wang, K. Magneto-controlled aptasensor for simultaneous electrochemical detection of dual mycotoxins in maize using metal sulfide quantum dots coated silica as labels. Biosens. Bioelectron. 2017, 89, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Liu, H.; Zhang, L.; Li, H.; Yan, M.; Song, X.; Yu, J. Multiplexed aptasensor for simultaneous detection of carcinoembryonic antigen and mucin-1 based on metal ion electrochemical labels and Ru(NH(3))(6)(3+) electronic wires. Biosens. Bioelectron. 2018, 99, 8–13. [Google Scholar] [CrossRef]
- Li, F.; Guo, Y.; Wang, X.; Sun, X. Multiplexed aptasensor based on metal ions labels for simultaneous detection of multiple antibiotic residues in milk. Biosens. Bioelectron. 2018, 115, 7–13. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Y.; Sun, Y.; Cui, L.; Zheng, F.; Zhang, J.; Song, Q.; Xu, C. Shell-encoded Au nanoparticles with tunable electroactivity for specific dual disease biomarkers detection. Biosens. Bioelectron. 2018, 99, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Duan, F.; Huang, X.; Liu, Y.; Zhou, N.; Xia, L.; Zhang, Z.; Du, M. A multiple aptasensor for ultrasensitive detection of miRNAs by using covalent-organic framework nanowire as platform and shell-encoded gold nanoparticles as signal labels. Anal. Chim. Acta 2019, 15, 176–185. [Google Scholar] [CrossRef]
- Rezaei, H.; Motovali-bashi, M.; Radfar, S. An enzyme-free electrochemical biosensor for simultaneous detection of two hemophilia A biomarkers: Combining target recycling with quantum dots-encapsulated metal-organic frameworks for signal amplification. Anal. Chim. Acta 2019, 1092, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; He, L.; Cao, Y.; Hong, F.; Zhang, K.; Hu, F.; Lin, J.; Wu, D.; Gan, N. Multiplexed electrochemical aptasensor for antibiotics detection using metallic-encoded apoferritin probes and double stirring bars-assisted target recycling for signal amplification. Talanta 2019, 197, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, Q.; Xie, H.; Wu, D.; Gan, N. A universal assay strategy for sensitive and simultaneous quantitation of multiplex tumor markers based on the stirring rod-immobilized DNA-LaMnO3 perovskite-metal ions encoded probes. Talanta 2021, 222, 121456. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Zuo, X.L.; Yang, R.Q.; Xia, F.; Plaxco, K.W.; White, R.J. Comparing the Properties of Electrochemical-Based DNA Sensors Employing Different Redox Tags. Anal. Chem. 2009, 81, 9109–9113. [Google Scholar] [CrossRef] [Green Version]
- Balintova, J.; Pohl, R.; Horakova, P.; Vidlakova, P.; Havran, L.; Fojta, M.; Hocek, M. Anthraquinone as a Redox Label for DNA: Synthesis, Enzymatic Incorporation, and Electrochemistry of Anthraquinone-Modified Nucleosides, Nucleotides, and DNA. Chem.-A Eur. J. 2011, 17, 14063–14073. [Google Scholar] [CrossRef]
- Lai, W.Q.; Zhuang, J.Y.; Tang, J.; Chen, G.N.; Tang, D.P. One-step electrochemical immunosensing for simultaneous detection of two biomarkers using thionine and ferrocene as distinguishable signal tags. Microchim. Acta 2012, 178, 357–365. [Google Scholar] [CrossRef]
- Fapyane, D.; Kekedy-Nagy, L.; Sakharov, I.Y.; Ferapontova, E.E. Electrochemistry and electrocatalysis of covalent hemin-G4 complexes on gold. J. Electroanal. Chem. 2018, 812, 174–179. [Google Scholar] [CrossRef]
- Huang, S.F.; Gan, N.; Li, T.H.; Zhou, Y.; Cao, Y.T.; Dong, Y.R. Electrochemical aptasensor for multi-antibiotics detection based on endonuclease and exonuclease assisted dual recycling amplification strategy. Talanta 2018, 179, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Mahato, K.; Kumar, S.; Srivastava, A.; Maurya, P.K.; Singh, R.; Chandra, P. Chapter 14—Electrochemical Immunosensors: Fundamentals and Applications in Clinical Diagnostics. In Handbook of Immunoassay Technologies; Vashist, S.K., Luong, J.H.T., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 359–414. [Google Scholar]
- Schoukroun-Barnes, L.R.; Macazo, F.C.; Gutierrez, B.; Lottermoser, J.; Liu, J.; White, R.J. Reagentless, Structure-Switching, Electrochemical Aptamer-Based Sensors. Annu. Rev. Anal. Chem. 2016, 9, 163–181. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.P.; Tang, J.; Li, Q.F.; Su, B.L.; Chen, G.N. Ultrasensitive Aptamer-Based Multiplexed Electrochemical Detection by Coupling Distinguishable Signal Tags with Catalytic Recycling of DNase I. Anal. Chem. 2011, 83, 7255–7259. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kwa, T.; Revzin, A. Simultaneous detection of cell-secreted TNF-alpha, and IFN-gamma using micropatterned aptamer-modified electrodes. Biomaterials 2012, 33, 7347–7355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; He, X.L.; Bo, B.; Liu, X.J.; Yin, Y.M.; Li, G.X. A “signal-on” electrochemical aptasensor for simultaneous detection of two tumor markers. Biosens. Bioelectron. 2012, 34, 249–252. [Google Scholar] [CrossRef]
- Jiang, L.P.; Peng, J.D.; Yuan, R.; Chai, Y.Q.; Yuan, Y.L.; Bai, L.J.; Wang, Y. An aptasensing platform for simultaneous detection of multiple analytes based on the amplification of exonuclease-catalyzed target recycling and DNA concatemers. Analyst 2013, 138, 4818–4822. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Chu, Z.Y.; Liu, Y.; Peng, J.M.; Jin, W.Q. Three-dimensional porous microarray of gold modified electrode for ultrasensitive and simultaneous assay of various cancer biomarkers. J. Mater. Chem. B 2014, 2, 2658–2665. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.F.; Song, D.M.; Wang, Z.H.; Zhang, F.F.; Yang, M.; Gui, R.J.; Xia, L.; Bi, S.; Xia, Y.Z.; Li, Y.H.; et al. Single electrode biosensor for simultaneous determination of interferon gamma and lysozyme. Biosens. Bioelectron. 2015, 68, 55–61. [Google Scholar] [CrossRef]
- Liu, Y.; Matharu, Z.; Rahimian, A.; Revzin, A. Detecting multiple cell-secreted cytokines from the same aptamer-functionalized electrode. Biosens. Bioelectron. 2015, 64, 43–50. [Google Scholar] [CrossRef]
- Liu, C.; Liu, X.; Qin, Y.; Deng, C.; Xiang, J. A simple regenerable electrochemical aptasensor for the parallel and continuous detection of biomarkers. RSC Adv. 2016, 6, 58469–58476. [Google Scholar] [CrossRef]
- Liu, G.P.; Wang, H.J.; Yuan, Y.L.; Wang, J.L. Target-Induced DNA Mismatch for One-Spot Simultaneous Electrochemical Detection of Multiple Heavy Metals Based on the Amplification of DNA Concatemers. J. Electrochem. Soc. 2017, 164, B81–B85. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, D.; Li, Y.; Ma, S.; Wang, M.; You, T. Hairpin DNA assisted dual-ratiometric electrochemical aptasensor with high reliability and anti-interference ability for simultaneous detection of aflatoxin B1 and ochratoxin A. Biosens. Bioelectron. 2021, 174, 112654. [Google Scholar] [CrossRef]
- Shen, Z.; Ni, S.; Yang, W.; Sun, W.; Yang, G.; Liu, G. Redox probes tagged electrochemical aptasensing device for simultaneous detection of multiple cytokines in real time. Sens. Actuators B Chem. 2021, 336, 129747. [Google Scholar] [CrossRef]
- Han, Z.; Tang, Z.M.; Jiang, K.Q.; Huang, Q.W.; Meng, J.J.; Nie, D.X.; Zhao, Z.H. Dual-target electrochemical aptasensor based on co-reduced molybdenum disulfide and Au NPs (rMoS(2)-Au) for multiplex detection of mycotoxins. Biosens. Bioelectron. 2020, 150, 111894. [Google Scholar] [CrossRef]
- Wei, M.; Xin, L.K.; Feng, S.; Liu, Y. Simultaneous electrochemical determination of ochratoxin A and fumonisin B1 with an aptasensor based on the use of a Y-shaped DNA structure on gold nanorods. Microchim. Acta 2020, 187. [Google Scholar] [CrossRef]
- Shekari, Z.; Zare, H.R.; Falahati, A. Dual assaying of breast cancer biomarkers by using a sandwich–type electrochemical aptasensor based on a gold nanoparticles–3D graphene hydrogel nanocomposite and redox probes labeled aptamers. Sens. Actuators B Chem. 2021, 332, 129515. [Google Scholar] [CrossRef]
- Cash, K.J.; Ricci, F.; Plaxco, K.W. An Electrochemical Sensor for the Detection of Protein-Small Molecule Interactions Directly in Serum and Other Complex Matrices. J. Am. Chem. Soc. 2009, 131, 6955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, R.; Lu, N.; Han, S.; Lu, Z.; Xiao, Y.; Zhao, Z.; Zhang, M. Simultaneous detection of dual biomarkers using hierarchical MoS2 nanostructuring and nano-signal amplification-based electrochemical aptasensor toward accurate diagnosis of prostate cancer. Biosens. Bioelectron. 2022, 197, 113797. [Google Scholar] [CrossRef]
- Luka, G.; Ahmad, S.; Falcone, N.; Kraatz, H.-B. 23—Advances in enzyme-based electrochemical sensors: Current trends, benefits, and constraints. In Bioelectronics and Medical Devices; Pal, K., Kraatz, H.-B., Khasnobish, A., Bag, S., Banerjee, I., Kuruganti, U., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 555–590. [Google Scholar]
- Yang, H. Enzyme-based ultrasensitive electrochemical biosensors. Curr. Opin. Chem. Biol. 2012, 16, 422–428. [Google Scholar] [CrossRef]
- Bai, L.J.; Yuan, R.; Chai, Y.Q.; Zhuo, Y.; Yuan, Y.L.; Wang, Y. Simultaneous electrochemical detection of multiple analytes based on dual signal amplification of single-walled carbon nanotubes and multi-labeled graphene sheets. Biomaterials 2012, 33, 1090–1096. [Google Scholar] [CrossRef]
- Zheng, T.T.; Tan, T.T.; Zhang, Q.F.; Fu, J.J.; Wu, J.J.; Zhang, K.; Zhu, J.J.; Wang, H. Multiplex acute leukemia cytosensing using multifunctional hybrid electrochemical nanoprobes at a hierarchically nanoarchitectured electrode interface. Nanoscale 2013, 5, 10360–10368. [Google Scholar] [CrossRef] [PubMed]
Analytes | Method | LOD/Range | Signal Tags | Ref. |
---|---|---|---|---|
thrombin, lysozyme | SWSV | both analytes: 20 ngL−1/20–500 ng L−1 | QDs nanocrystal: CdS, PbS | [48] |
adenosine, thrombin | ASV | adenosine: 8.8 × 10−12 M/1 × 10−11–2.0 × 10−9 M, thrombin: 7.6 × 10−13 M/1.0 × 10−12–3.0 × 10−10 M | CdS, PbS | [49] |
ATP, cocaine | SWV | ATP: 30 nM, cocaine: 50 nM | CdS, PbS | [50] |
CAP, PCB-72 | SWV | CAP, PCB-72: 0.3 pgmL−1/0.001–100 ngmL−1 | Cd2+ and Pb2+ encoded MSPEIs | [51] |
CAP, PCB-72 | SWSV | CAP: 0.33 pg mL−1, PCB72: 0.35 pg mL−1/0.001–100 ng mL−1 | CdS, PbS | [52] |
OTC, KANA | SWV | OTC: 0.18 pM, KANA: 0.15 pM/0.5 pM–50 nM | NMOF labelled Pb2+ or Cd2+ | [53] |
STR, CAP, TET | SWASV | STR: 10 nM, CHL: 5 nM, TET: 20 nM | PbS, CdS, ZnS QDs | [54] |
CAP, OTC | SWV | CAP: 0.15 ngmL−1, OTC: 0.10 ngmL−1/0.0005ng–50 ngmL−1 | Cd2+ or Pb2+ encoded MHPs | [55] |
KANA, CAP | SWV | KANA: 0.16 pM, CAP: 0.19 pM | NMOF labelled Pb2+ or Cd2+ | [56] |
CAP, OTC | SWV | CAP: 33 fM, OTC: 48 fM | NMOF labelled Pb2+ or Cd2+ | [57] |
OTA, FB1 | SWV | OTA: 5 pgmL−1, FB1: 20 pgmL−1 OTA: 10 pgmL−1–10 ngmL−1, FB1: 50 pgmL−1–50 ngmL−1 | CdTe or PbS QDs coated silica | [58] |
CEA, mucin-1 | DPV | both analytes: 3.3 fM/0.01 pM-100 nM | Au/BSA nanospheres loading Pb2+, Cd2+ | [59] |
KANA, STR | DPV | KANA: 74.50 pM, STR: 36.45 pM/0.1–100 nM | CdS, PbS | [60] |
CEA, AFP | DPV | CEA: 1.8 pg mL−1, AFP: 0.3 pg mL−1 | Au@Cu2O and Au@Ag | [61] |
miRNA 155, miRNA 122 | DPV | miRNA 155: 6.7 fM, miRNA 122: 1.5 fM/0.01–1000 pM | AgNCs@AuNPs:Cu2O@AuNPs | [62] |
haemophilia A-related microRNAs:miR-1246 and miR-4521 | DPV | miR-1246: 0.19 fM, miR-4521: 0.28 fM/1 fM–1 µM | QDs@ZIF-8: PbS@ZIF-8 and CdS@ZIF-8 | [63] |
KANA, AMP | SWV | KANA: 18 fM, AMP: 15 fM/0.05 pM–50 nM | apoferritin loading Cd2+, Pb2+ | [64] |
AFP, CEA, PSA | SWV | CEA: 3.6 × 10−4 ng mL−1, AFP: 3,4 × 10−4 ng mL−1, PSA: 2.8 × 10−4 ng mL−1 | PDA-Pb2+, Cd2+, Cu2+-LMO | [42] |
Analytes | Method | LOD/Range | Signal Tags | Ref. |
---|---|---|---|---|
ATP, cocaine | SWV | ATP: 0.1 pM, cocaine: 1.5 pM | Th, Fc | [73] |
MUC-1, VEGF165 | SWV | 0.33 nM/1 nM–20 nM | Fc | [75] |
TB, OTA | DPV | TB: 0.05 pM, OTA: 0.12 pM/TB: 0.1 pM–40 nM, OTA: 0.4 pM–35 nM | AQ, hemin | [76] |
Ang, Tob | SWV | Ang: 0.07 pM, Tob: 20 fM/Ang: 0.2 pM–10 nM, Tob: 50 fM-5 nM | MB, Fc | [77] |
IFN-γ, TNF-α | SWV | IFN-γ: 6.35 ngmL−1, TNF-α: 5.46 ngmL−1 | AQ, MB | [79] |
IFN-γ, Lys | SWV | IFN-γ: 1.14 × 10−3 nM, Lys: 0.0164 nM/IFN-γ: 0.01–10 nM, Lys: 0.1–100 nM | MB, Fc | [78] |
MUC-1, CEA | SWV | MUC-1: 0.6 nM, CEA: 2.75 ngmL−1/MUC-1: 10 nM–100 nM, CEA: 30 ngmL−1–300 ngmL−1 | MB | [80] |
Ag+, Hg2+ | DPV | Ag+: 2 pM, Hg2+: 7.5 pM/Ag+: 0.01 nM–5µM, Hg2+: 0.5 nM–50 µM | AQ, Fc | [81] |
KANA, CAP | SWV | KANA: 35 fM, CAP: 21 fM/KANA, CAP: 1 × 10−4–50 nM | MB, Fc | [70] |
ZEN, FB1 | DPV | ZEN, FB1: 5 × 10−4 ngmL−1/ZEN: 1 × 10−3–10 ngmL−1, FB1: 1 × 10−3–1 × 102 ngmL−1 | Th, Fc | [84] |
OTA, FB1 | DPV | OTA: 0.47 pgmL−1, FB1: 0.26 pgmL−1/1.0 pgmL−1–100 ngmL−1 | Th, Fc | [85] |
AFB1, OTA | ACV | AFB1: 4.3 pgmL−1, OTA: 13.3 pgmL−1/AFB1: 10–3000 pgmL−1, OTA: 30–10,000 pgmL−1 | Fc, MB | [82] |
CEA, CA 15-3 | DPV | CEA: 11.2 pg mL−1, CA 15-3 132 × 10−2 U mL−1/CEA: 5.0 × 10−2–60.0 ng mL−1, CA 15-3: 5.0 × 10−2–100.0 U mL−1 | Hemin, Fc | [86] |
VEGF, IFN-γ, TNF-α | SWV | 5 pg mL−1 each cytokine/VEGF: 5–300 pg mL−1, IFN-γ: 5–300 pg mL−1, TNF-α: 5–200 pg mL−1 | AQ, MB, Fc | [83] |
PSA, sarcosine | SWV | PSA: 2.5 fg mL−1, sarcosine: 14.4 fg mL−1 | MB, Fc | [88] |
Analytes | Method | LOD/Range | Signal Tags | Ref. |
---|---|---|---|---|
PDGF, thrombin | DPV | PDGF: 8 pM/0.01–35 nM Thrombin: 11pM/0.02–45 nM | bienzyme: glucose oxidase, HRP, Tb, Fc | [91] |
AML, ALL | DPV | ~350 cells per mL/5 × 102–1 × 107 cells per mL | HRP, Aq, Thi | [92] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grabowska, I.; Hepel, M.; Kurzątkowska-Adaszyńska, K. Advances in Design Strategies of Multiplex Electrochemical Aptasensors. Sensors 2022, 22, 161. https://doi.org/10.3390/s22010161
Grabowska I, Hepel M, Kurzątkowska-Adaszyńska K. Advances in Design Strategies of Multiplex Electrochemical Aptasensors. Sensors. 2022; 22(1):161. https://doi.org/10.3390/s22010161
Chicago/Turabian StyleGrabowska, Iwona, Maria Hepel, and Katarzyna Kurzątkowska-Adaszyńska. 2022. "Advances in Design Strategies of Multiplex Electrochemical Aptasensors" Sensors 22, no. 1: 161. https://doi.org/10.3390/s22010161
APA StyleGrabowska, I., Hepel, M., & Kurzątkowska-Adaszyńska, K. (2022). Advances in Design Strategies of Multiplex Electrochemical Aptasensors. Sensors, 22(1), 161. https://doi.org/10.3390/s22010161