Electromyogram-Based Classification of Hand and Finger Gestures Using Artificial Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Equipment and Software
2.3. Experimental Setup and Data Acquisition
2.4. Data Preprocessing
2.5. Feature Extraction
2.6. Modeling
2.7. Statistical Analysis
3. Results
3.1. Classifier Assessment
3.2. Statistical Comparison of the Performances of the Machine Learning Methods
3.3. Confusion Matrices of ANN-Based Classifiers
3.4. Performance Comparison of ANN-Based Classifiers According to Feature Combinations
3.5. Estimation of Real-Time Performance Using ANN-Based Classifiers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Jiralerspong, T.; Nakanishi, E.; Liu, C.; Ishikawa, J. Experimental Study of Real-Time Classification of 17 Voluntary Movements for Multi-Degree Myoelectric Prosthetic Hand. Appl. Sci. 2017, 7, 1163. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Schultz, A.E.; Kuiken, T.A. Quantifying pattern recognition- based myoelectric control of multifunctional transradial prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 185–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahsan, M.R.; Ibrahimy, M.I.; Khalifa, O.O. Electromygraphy (EMG) signal based hand gesture recognition using artificial neural network (ANN). In Proceedings of the 2011 4th International Conference on Mechatronics (ICOM), Kuala Lumpur, Malaysia, 17–19 May 2011. [Google Scholar] [CrossRef]
- Phinyomark, A.; Quaine, F.; Charbonnier, S.; Serviere, C.; Tarpin-Bernard, F.; Laurillau, Y. Feature extraction of the first difference of EMG time series for EMG pattern recognition. Comput. Methods Programs Biomed. 2014, 117, 247–256. [Google Scholar] [CrossRef]
- Shim, H.-M.; Lee, S. Multi-channel electromyography pattern classification using deep belief networks for enhanced user experience. J. Cent. South Univ. 2015, 22, 1801–1808. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, X.; Wang, Z.; Wen, J.; Kan, J.; Li, W. Exploration of feature extraction methods and dimension for sEMG signal classification. Appl. Sci. 2019, 9, 5343. [Google Scholar] [CrossRef] [Green Version]
- Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Feature reduction and selection for EMG signal classification. Expert Syst. Appl. 2012, 39, 7420–7431. [Google Scholar] [CrossRef]
- Hudgins, B.; Parker, P.; Scott, R.N. A New Strategy for Multifunction Myoelectric Control. IEEE Trans. Biomed. Eng. 1993, 40, 82–94. [Google Scholar] [CrossRef]
- Englehart, K.; Hudgins, B. A Robust, Real-Time Control Scheme for Multifunction Myoelectric Control. IEEE Trans. Biomed. Eng. 2003, 50, 848–854. [Google Scholar] [CrossRef]
- Yang, D.; Zhao, J.; Jiang, L.; Liu, H. Dynamic hand motion recognition based on transient and steady-state emg signals. Int. J. Hum. Robot. 2012, 9, 1–18. [Google Scholar] [CrossRef]
- Nazmi, N.; Rahman, M.A.A.; Yamamoto, S.I.; Ahmad, S.A.; Malarvili, M.B.; Mazlan, S.A.; Zamzuri, H. Assessment on stationarity of EMG signals with different windows size during isotonic contractions. Appl. Sci. 2017, 7, 1050. [Google Scholar] [CrossRef] [Green Version]
- Palkowski, A.; Redlarski, G. Basic Hand Gestures Classification Based on Surface Electromyography. Comput. Math. Methods Med. 2016, 2016, 6481282. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Xiong, L.; Song, X.; Yan, Z.; Xie, Y. Identification of finger movements from forearm surface EMG using an augmented probabilistic neural network. In Proceedings of the 2017 IEEE/SICE International Symposium on System Integration (SII), Taipei, Taiwan, 11–14 December 2017. [Google Scholar] [CrossRef]
- Shi, W.T.; Lyu, Z.J.; Tang, S.T.; Chia, T.L.; Yang, C.Y. A bionic hand controlled by hand gesture recognition based on surface EMG signals: A preliminary study. Biocybern. Biomed. Eng. 2018, 38, 126–135. [Google Scholar] [CrossRef]
- Sharma, S.; Gupta, R. On the use of temporal and spectral central moments of forearm surface EMG for finger gesture classification. In Proceedings of the 2018 2nd International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE), Ghaziabad, India, 20–21 September 2018. [Google Scholar] [CrossRef]
- Qi, J.; Jiang, G.; Li, G.; Sun, Y.; Tao, B. Surface EMG hand gesture recognition system based on PCA and GRNN. Neural Comput. Appl. 2020, 32, 6343–6351. [Google Scholar] [CrossRef]
- Arteaga, M.V.; Castiblanco, J.C.; Mondragon, I.F.; Colorado, J.D.; Alvarado-Rojas, C. EMG-driven hand model based on the classification of individual finger movements. Biomed. Signal Process. Control 2020, 58, 101834. [Google Scholar] [CrossRef]
- Fajardo, J.M.; Gomez, O.; Prieto, F. EMG hand gesture classification using handcrafted and deep features. Biomed. Signal Process. Control. 2021, 63, 102210. [Google Scholar] [CrossRef]
- Arozi, M.; Caesarendra, W.; Ariyanto, M.; Munadi, M.; Setiawan, J.D.; Glowacz, A. Pattern recognition of single-channel sEMG signal using PCA and ANN method to classify nine hand movements. Symmetry 2020, 12, 541. [Google Scholar] [CrossRef] [Green Version]
- Mendes Junior, J.J.A.; Freitas, M.L.B.; Campos, D.P.; Farinelli, F.A.; Stevan, S.L.; Pichorim, S.F. Analysis of influence of segmentation, features, and classification in sEMG processing: A case study of recognition of brazilian sign language alphabet. Sensors 2020, 20, 4359. [Google Scholar] [CrossRef] [PubMed]
- Asif, A.R.; Waris, A.; Gilani, S.O.; Jamil, M.; Ashraf, H.; Shafique, M.; Niazi, I.K. Performance evaluation of convolutional neural network for hand gesture recognition using EMG. Sensors 2020, 20, 1642. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Ibarra, J.C.; Soubervielle-Montalvo, C.; Vital-Ochoa, O.; Perez-Gonzalez, H.G. EMG pattern recognition system based on neural networks. In Proceedings of the 2012 11th Mexican International Conference on Artificial Intelligence, San Luis Potos, Mexico, 27 October–4 November 2012. [Google Scholar] [CrossRef]
- Dorgham, O.; Al-Mherat, I.; Al-Shaer, J.; Bani-Ahmad, S.; Laycock, S. Smart system for prediction of accurate surface electromyography signals using an artificial neural network. Futur. Internet 2019, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Karabulut, D.; Ortes, F.; Arslan, Y.Z.; Adli, M.A. Comparative evaluation of EMG signal features for myoelectric controlled human arm prosthetics. Biocybern. Biomed. Eng. 2017, 37, 326–335. [Google Scholar] [CrossRef]
- Elamvazuthi, I.; Duy, N.H.X.; Ali, Z.; Su, S.W.; Khan, M.K.A.A.; Parasuraman, S. Electromyography (EMG) based Classification of Neuromuscular Disorders using Multi-Layer Perceptron. Procedia Comput. Sci. 2015, 76, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Ariyanto, M.; Caesarendra, W.; Mustaqim, K.A.; Irfan, M.; Pakpahan, J.A.; Setiawan, J.D.; Winoto, A.R. Finger movement pattern recognition method using artificial neural network based on electromyography (EMG) sensor. In Proceedings of the 2015 International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology (ICACOMIT), Bandung, Indonesia, 29–30 October 2015. [Google Scholar] [CrossRef]
- Kurniawan, S.R.; Pamungkas, D. MYO Armband sensors and Neural Network Algorithm for Controlling Hand Robot. In Proceedings of the 2018 International Conference on Applied Engineering (ICAE). Batam, Indonesia, 3–4 October 2018. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, K.; Qian, J.; Zhang, L. Real-time surface EMG pattern recognition for hand gestures based on an artificial neural network. Sensors 2019, 19, 3170. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Zhang, Z. Real-time pattern recognition for hand gesture based on ANN and surface EMG. In Proceedings of the 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 24–26 May 2019. [Google Scholar] [CrossRef]
- Merletti, R. Standards for Reporting EMG Data. J. Electromyogr. Kinesiol. 1999, 9, III–IV. [Google Scholar]
- Heywood, S.; Pua, Y.H.; McClelland, J.; Geigle, P.; Rahmann, A.; Bower, K.; Clark, R. Low-cost electromyography—Validation against a commercial system using both manual and automated activation timing thresholds. J. Electromyogr. Kinesiol. 2018, 42, 74–80. [Google Scholar] [CrossRef]
- Del Toro, S.; Wei, Y.; Olmeda, E.; Ren, L.; Guowu, W.; Díaz, V. Validation of a Low-Cost Electromyography (EMG) System via a Commercial and Accurate EMG Device: Pilot Study. Sensors 2019, 19, 5214. [Google Scholar] [CrossRef] [Green Version]
- SparkFun Electronics Electromyography Sensor for Microcontroller Applications MyoWareTM Muscle Sensor (AT-04-001) Datasheet. Available online: https://cdn.sparkfun.com/assets/a/3/a/f/a/AT-04-001.pdf (accessed on 26 October 2021).
- Chu, J.U.; Moon, I.; Mun, M.S. A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand. IEEE Trans. Biomed. Eng. 2006, 53, 2232–2239. [Google Scholar] [CrossRef]
- Zahak, M. Computational Intelligence in Electromyography Analysis—A Perspective on Current Applications and Future Challenges; Signal Acquisition Using Surface EMG and Circuit Design Considerations for Robotic Prosthesis; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Barbero, M.; Merletti, R.; Rainoldi, A. Atlas of Muscle Innervation Zones: Understanding Surface EMG and Its Applications; Springer: Milano, Italy, 2012; ISBN 978-88-470-2462-5. [Google Scholar]
- Wang, M.; Wang, X.; Peng, C.; Zhang, S.; Fan, Z.; Liu, Z. Research on EMG segmentation algorithm and walking analysis based on signal envelope and integral electrical signal. Photonic. Netw. Commun. 2019, 37, 195–203. [Google Scholar] [CrossRef]
- Zardoshti-Kermani, M.; Wheeler, B.C.; Badie, K.; Hashemi, R.M. EMG feature evaluation for movement control of upper extremity prostheses. IEEE Trans. Rehabil. Eng. 1995, 3, 324–333. [Google Scholar] [CrossRef]
- Challis, R.E.; Kitney, R.I. Biomedical signal processing (in four parts)—Part 3 The power spectrum and coherence function. Med. Biol. Eng. Comput. 1991, 29, 225–241. [Google Scholar] [CrossRef]
- Said, S.; Karar, A.S.; Beyrouthy, T.; Alkork, S.; Nait-Ali, A. Biometrics verification modality using multi-channel semg wearable bracelet. Appl. Sci. 2020, 10, 6960. [Google Scholar] [CrossRef]
- Nazmi, N.; Rahman, M.A.A.; Yamamoto, S.I.; Ahmad, S.A.; Zamzuri, H.; Mazlan, S.A. A review of classification techniques of EMG signals during isotonic and isometric contractions. Sensors 2016, 16, 1304. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, S.; Lindén, M.; Gholamhosseini, H.; Naber, A.; Ortiz-Catalan, M. Evaluation of surface EMG-based recognition algorithms for decoding hand movements. Med. Biol. Eng. Comput. 2020, 58, 83–100. [Google Scholar] [CrossRef] [Green Version]
- Hargrove, L.J.; Englehart, K.; Hudgins, B. A comparison of surface and intramuscular myoelectric signal classification. IEEE Trans. Biomed. Eng. 2007, 54, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Phinyomark, A.; Khushaba, R.N.; Scheme, E. Feature extraction and selection for myoelectric control based on wearable EMG sensors. Sensors 2018, 18, 1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phinyomark, A.; Scheme, E. EMG pattern recognition in the era of big data and deep learning. Big Data Cogn. Comput. 2018, 2, 21. [Google Scholar] [CrossRef] [Green Version]
- Atzori, M.; Castellini, C.; Müller, H. Spatial Registration of Hand Muscle Electromyography Signals. In Proceedings of the 7th International Workshop on Biosignal Interpretation (BSI2012), Como, Italy, 2–4 July 2012. [Google Scholar]
- Martens, J.; Daly, D.; Deschamps, K.; Fernandes, R.J.P.; Staes, F. Intra-individual variability of surface electromyography in front crawl swimming. PLoS ONE 2015, 10, e0144998. [Google Scholar] [CrossRef] [Green Version]
- Winter, D.A.; Yack, H.J. EMG profiles during normal human walking: Stride-to-stride and inter-subject variability. Electroencephalogr. Clin. Neurophysiol. 1987, 67, 402–411. [Google Scholar] [CrossRef]
- Guidetti, L.; Rivellini, G.; Figura, F. EMG patterns during running: Intra-and inter-individual variability. J. Electromyogr. Kinesiol. 1996, 6, 37–48. [Google Scholar] [CrossRef]
- Jiang, N.; Lorrain, T.; Farina, D. A state-based, proportional myoelectric control method: Online validation and comparison with the clinical state-of-the-art. J. Neuroeng. Rehabil. 2014, 11, 110. [Google Scholar] [CrossRef] [Green Version]
- Lorrain, T.; Jiang, N.; Farina, D. Influence of the training set on the accuracy of surface EMG classification in dynamic contractions for the control of multifunction prostheses. J. Neuroeng. Rehabil. 2011, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Hargrove, L.J.; Scheme, E.J.; Englehart, K.B.; Hudgins, B.S. Multiple binary classifications via linear discriminant analysis for improved controllability of a powered prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 49–57. [Google Scholar] [CrossRef]
- Englehart, K.; Hudgins, B.; Parker, P.A. A wavelet-based continuous classification scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 2001, 48, 302–311. [Google Scholar] [CrossRef]
- Scheme, E.J.; Hudgins, B.S.; Englehart, K.B. Confidence-based rejection for improved pattern recognition myoelectric control. IEEE Trans. Biomed. Eng. 2013, 60, 1563–1570. [Google Scholar] [CrossRef]
- Jović, A.; Brkić, K.; Bogunović, N. A review of feature selection methods with applications. In Proceedings of the 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 25–29 May 2015. [Google Scholar] [CrossRef]
- Remeseiro, B.; Bolon-Canedo, V. A review of feature selection methods in medical applications. Comput. Biol. Med. 2019, 112, 103375. [Google Scholar] [CrossRef]
- Ortiz-Catalan, M.; Brånemark, R.; Håkansson, B. BioPatRec: A modular research platform for the control of artificial limbs based on pattern recognition algorithms. Source Code Biol. Med. 2013, 8, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, S.; Naber, A.; Ortiz-catalan, M.; Gholamhosseini, H.; Lindén, M. Real-time and offline evaluation of myoelectric pattern recognition for the decoding of hand movements. Sensors 2021, 21, 5677. [Google Scholar] [CrossRef]
- Asghari Oskoei, M.; Hu, H. Myoelectric control systems-A survey. Biomed. Signal Process. Control 2007, 2, 275–294. [Google Scholar] [CrossRef]
- Wang, N.; Chen, Y.; Zhang, X. The recognition of multi-finger prehensile postures using LDA. Biomed. Signal Process. Control. 2013, 8, 706–712. [Google Scholar] [CrossRef]
- Khushaba, R.N.; Takruri, M.; Miro, J.V.; Kodagoda, S. Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features. Neural Netw. 2014, 55, 42–58. [Google Scholar] [CrossRef]
- Daley, H.; Englehart, K.; Hargrove, L.; Kuruganti, U. High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control. J. Electromyogr. Kinesiol. 2012, 22, 478–484. [Google Scholar] [CrossRef]
- Parajuli, N.; Sreenivasan, N.; Bifulco, P.; Cesarelli, M.; Savino, S.; Niola, V.; Esposito, D.; Hamilton, T.J.; Naik, G.R.; Gunawardana, U.; et al. Real-time EMG based pattern recognition control for hand prostheses: A review on existing methods, challenges and future implementation. Sensors 2019, 19, 4596. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Sheng, X.; Zhu, X.; Jiang, C.; Jiang, N. Spatial Information Enhances Myoelectric Control Performance with only Two Channels. IEEE Trans. Ind. Inform. 2019, 15, 1226–1233. [Google Scholar] [CrossRef]
- Merletti, R.; Cerone, G.L. Tutorial. Surface EMG detection, conditioning and pre-processing: Best practices. J. Electromyogr. Kinesiol. 2020, 54, 102440. [Google Scholar] [CrossRef]
- Merletti, R.; Muceli, S. Tutorial. Surface EMG detection in space and time: Best practices. J. Electromyogr. Kinesiol. 2019, 49, 102363. [Google Scholar] [CrossRef]
Time-Domain Features | Formula |
---|---|
Root mean square (RMS) | |
Variance (VAR) | |
Mean absolute value (MAV) | |
Slop sign change (SSC) | |
Zero crossing (ZC) | |
Waveform length (WL) |
Subject | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Method | Parameter | #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | #10 |
ANN | Number of hidden layers | 4 | 3 | 4 | 4 | 3 | 4 | 3 | 4 | 4 | 4 |
Number of neurons | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | |
Dropout rate | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | |
Batch normalization | applied | applied | applied | applied | applied | applied | applied | applied | applied | applied | |
SVM | C | 10 | 10 | 100 | 100 | 100 | 100 | 10 | 100 | 100 | 100 |
Gamma | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
Kernel | rbf | rbf | rbf | rbf | rbf | rbf | rbf | rbf | rbf | rbf | |
RF | Number of trees | 1000 | 1000 | 1000 | 1000 | 500 | 1000 | 500 | 1000 | 1000 | 1000 |
Class weight | BAL | BAL | none | BAL | none | BAL | none | none | none | none | |
LR | Penalty | L2 | none | none | none | none | L2 | none | none | none | L2 |
C | 1 | 1 | 1 | 0.1 | 1 | 1 | 0.001 | 1 | 1 | 1 | |
Class weight | none | BAL | none | none | none | BAL | None | BAL | none | none | |
Solver | lbfgs | saga | lbfgs | saga | lbfgs | lbfgs | saga | lbfgs | lbfgs | lbfgs |
#1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | #10 | Mean | 95% CI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ANN | 0.947 | 0.939 | 0.941 | 0.927 | 0.952 | 0.928 | 0.942 | 0.942 | 0.935 | 0.944 | 0.940 | 0.935–0.945 |
SVM | 0.898 | 0.866 | 0.857 | 0.824 | 0.905 | 0.856 | 0.883 | 0.886 | 0.866 | 0.899 | 0.874 | 0.858–0.890 |
RF | 0.818 | 0.804 | 0.817 | 0.779 | 0.878 | 0.791 | 0.861 | 0.865 | 0.849 | 0.847 | 0.831 | 0.809–0.853 |
LR | 0.520 | 0.454 | 0.515 | 0.435 | 0.672 | 0.442 | 0.611 | 0.600 | 0.502 | 0.639 | 0.539 | 0.483–0.595 |
ANN | SVM | RF | |
---|---|---|---|
SVM | 0.003 | - | - |
RF | <0.001 | 0.386 | - |
LR | <0.001 | 0.002 | 0.012 |
Feature Combination | Mean Accuracy ± SD |
---|---|
ZC/SSC/WL | 0.884 ± 0.028 |
ZC/SSC/WL + MAV | 0.926 ± 0.012 |
ZC/SSC/WL + RMS | 0.930 ± 0.011 |
ZC/SSC/WL + VAR | 0.921 ± 0.011 |
ZC/SSC/WL + MAV+ RMS | 0.938 ± 0.011 |
ZC/SSC/WL + MAV + VAR | 0.934 ± 0.009 |
ZC/SSC/WL + RMS + VAR | 0.933 ± 0.011 |
ZC/SSC/WL + MAV + RMS + VAR | 0.940 ± 0.008 |
Reference | Number of Subjects | Feature Types | Number of Features | Number of Gestures (NG) | Number of Channels (NCh) | NG/NCh | Window Length | ML Method | Accuracy |
---|---|---|---|---|---|---|---|---|---|
Palkowski & Redlarski, 2016 [12] | N/A | TD | 6 | 6 (2 W + 2 WH + 2 IF) | 2 | 3 | N/A | SVM | 0.981 |
Fu et al. 2017 [13] | 5 | TD-AR | 65 | 8 (8 IF) | 6 | 1.33 | 125 ms | PNN | 0.922 |
Shi et al., 2018 [14] | 13 | TD | 8 | 4 (WH + 3 IF) | 2 | 2 | 250 ms | KNN | 0.938 |
Sharma & Gupta, 2018 [15] | 4 | TD, FD | 33 | 9 (8 IF + R) | 3 | 3 | 125 ms | SVM | 0.901 |
Qi et al., 2020 [16] | N/A | TD, FD | 64 | 9 (2 WH + 2 W + 4 IF + R) | 16 | 0.56 | N/A | ANN | 0.951 |
Arteaga et al., 2020 [17] | 20 | TD, FD | 24 | 6 (5 IF + WH) | 4 | 1.5 | N/A | KNN | 0.975 |
Fajardo et al., 2021 [18] | N/A | TD, FD, TFD, features extracted by CNN | 198 | 10 (6 W + 3 WH + IF, highest *) | 1 | 10 | 750 ms | CNN | 0.657 |
4 (lowest *) | 4 | 0.952 | |||||||
This study | 10 | TD | 18 | 10 (2 WH + 7 IF + R) | 3 | 3.34 | 250 ms | ANN | 0.940 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.H.; Min, J.Y.; Byun, S. Electromyogram-Based Classification of Hand and Finger Gestures Using Artificial Neural Networks. Sensors 2022, 22, 225. https://doi.org/10.3390/s22010225
Lee KH, Min JY, Byun S. Electromyogram-Based Classification of Hand and Finger Gestures Using Artificial Neural Networks. Sensors. 2022; 22(1):225. https://doi.org/10.3390/s22010225
Chicago/Turabian StyleLee, Kyung Hyun, Ji Young Min, and Sangwon Byun. 2022. "Electromyogram-Based Classification of Hand and Finger Gestures Using Artificial Neural Networks" Sensors 22, no. 1: 225. https://doi.org/10.3390/s22010225
APA StyleLee, K. H., Min, J. Y., & Byun, S. (2022). Electromyogram-Based Classification of Hand and Finger Gestures Using Artificial Neural Networks. Sensors, 22(1), 225. https://doi.org/10.3390/s22010225