Bionic for Training: Smart Framework Design for Multisensor Mechatronic Platform Validation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechatronic Platform
2.2. Sensors, Microcontroller, and Android App
2.3. Statistical Analysis
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Umair, M.; Aamir Cheema, M.; Cheema, O.; Li, H.; Lu, H. Impact of COVID-19 on IoT Adoption in Healthcare, Smart Homes, Smart Buildings, Smart Cities, Transportation and Industrial IoT. Sensors 2021, 21, 3838. [Google Scholar] [CrossRef]
- Malasinghe, L.P.; Ramzan, N.; Dahal, K. Remote patient monitoring: A comprehensive study. J. Ambient Intell. Humaniz. Comput. 2019, 10, 57–76. [Google Scholar] [CrossRef] [Green Version]
- Puaschunder, J.M. The Potential for Artificial Intelligence in Healthcare. SSRN Electron. J. 2020, 6, 94–98. [Google Scholar] [CrossRef]
- Yu, K.-H.; Beam, A.L.; Kohane, I.S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Lo Muzio, F.P.; Rozzi, G.; Rossi, S.; Luciani, G.B.; Foresti, R.; Cabassi, A.; Fassina, L.; Miragoli, M. Artificial intelligence supports decision making during open-chest surgery of rare congenital heart defects. J. Clin. Med. 2021, 10, 5330. [Google Scholar] [CrossRef]
- Belletti, B.; Berardengo, M.; Collini, L.; Foresti, R.; Garziera, R. Design of an instrumentation for the automated damage detection in ceilings. NDT E Int. 2018, 94, 31–37. [Google Scholar] [CrossRef]
- Tonelli, A.; Candiani, A.; Sozzi, M.; Zucchelli, A.; Foresti, R.; Dall’Asta, C.; Selleri, S.; Cucinotta, A. The geek and the chemist: Antioxidant capacity measurements by DPPH assay in beverages using open source tools, consumer electronics and 3D printing. Sens. Actuators B Chem. 2019, 282, 559–566. [Google Scholar] [CrossRef]
- Foresti, R.; Rossi, S.; Magnani, M.; Guarino Corrado, L.B.; Delmonte, N. Smart Society and Artificial Intelligence: Big Data Scheduling and the Global Standard Method Applied to Smart Maintenance. Engineering 2020, 6, 835–846. [Google Scholar] [CrossRef]
- Foresti, R.; Rossi, S.; Pinelli, S.; Alinovi, R.; Sciancalepore, C.; Delmonte, N.; Selleri, S.; Caffarra, C.; Raposio, E.; Macaluso, G.; et al. In-vivo vascular application via ultra-fast bioprinting for future 5D personalised nanomedicine. Sci. Rep. 2020, 10, 3205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, S.; Jain, S. Ontologies as a semantic model in IoT. Int. J. Comput. Appl. 2020, 42, 233–243. [Google Scholar] [CrossRef]
- Çavuşoǧlu, M.; Eroǧul, O.; Telatar, Z. Design and implemantation of a programmable apnea monitoring system. In Proceedings of the 13th European Signal Processing Conference, EUSIPCO 2005, Antalya, Turkey, 4–8 September 2005; pp. 129–132. [Google Scholar]
- Erickson, G.; Dobson, N.R.; Hunt, C.E. Immature control of breathing and apnea of prematurity: The known and unknown. J. Perinatol. 2021, 41, 2111–2123. [Google Scholar] [CrossRef] [PubMed]
- Sale, S.M. Neonatal apnoea. Best Pract. Res. Clin. Anaesthesiol. 2010, 24, 323–336. [Google Scholar] [CrossRef] [PubMed]
- Collini, L.; Foresti, R.; Garziera, R. Automated diagnosis of damages in ceilings by a portable device. Mater. Today Proc. 2017, 4, 5767–5772. [Google Scholar] [CrossRef]
- Aggarwal, C.C. (Ed.) Managing and Mining Uncertain Data; Springer: New York, NY, USA, 2009; ISBN 978-0-387-09689-6. [Google Scholar]
- Lee Ventola, C. Mobile devices and apps for health care professionals: Uses and benefits. P T 2014, 39, 356–364. [Google Scholar]
- Elder, D.E.; Campbell, A.J.; Galletly, D. Current definitions for neonatal apnoea: Are they evidence based? J. Paediatr. Child Health 2013, 49, E388–E396. [Google Scholar] [CrossRef]
- Morton, S.U.; Smith, V.C. Treatment options for apnoea of prematurity. Arch. Dis. Child. Fetal Neonatal 2016, 101, F352–F356. [Google Scholar] [CrossRef]
- Gauda, E.B.; Richard, J.M. “Control of Breathing” in Avery’s Diseases of the Newborn. In Control of Breathing, 10th ed.; Elsevier Inc.: San Diego, CA, USA, 2018; pp. 600–617. [Google Scholar] [CrossRef]
- Pillekamp, F.; Al, E. Factors influencing apnea and bradycardia of prematurity—Implications for neurodevelopment. Neonatology 2007, 91, 155–161. [Google Scholar] [CrossRef]
- Ramanathan, R.; Al, E. Cardiorespiratory Events Recorded on Home Monitors. JAMA 2001, 285, 2199–2207. [Google Scholar] [CrossRef] [Green Version]
- Cattani, L.; Al, E. Monitoring infants by automatic video processing: A unified approach to motion analysis. Comput. Biol. Med. 2017, 80, 158–165. [Google Scholar] [CrossRef]
- World Health Organization Apnea Monitors. Available online: https://www.who.int/medical_devices/innovation/apnea_monitor.pdf (accessed on 16 January 2021).
- Gorecky, D.; Schmitt, M.; Loskyll, M.; Zühlke, D. Human-Machine-Interaction in the Industry 4.0 Era. In Proceedings of the 12th IEEE International Conference on Industrial Informatics (INDIN 2014), Porto Alegre, Brazil, 27–30 July 2014; pp. 289–294. [Google Scholar]
- Teunissen, P.W. Experience, trajectories, and reifications: An emerging framework of practice-based learning in healthcare workplaces. Adv. Health Sci. Educ. 2015, 20, 843–856. [Google Scholar] [CrossRef]
- Mello, P.S.; Natale, C.C.; Marzin-Janvier, P.; Vieira, L.Q.; Manzoni-de-Almeida, D. Inquiry-based learning in immunology: Analysis of scientific argument construction by undergraduate students in biological science and health care classes. J. Biol. Educ. 2020. [Google Scholar] [CrossRef]
- Paul, S.; Riffat, M.; Yasir, A.; Mahim, M.N.; Sharnali, B.Y.; Naheen, I.T.; Rahman, A.; Kulkarni, A. Industry 4.0 applications for medical/healthcare services. J. Sens. Actuator Netw. 2021, 10, 43. [Google Scholar] [CrossRef]
- Foresti, R.; Rossi, S.; Selleri, S. Bio-composite materials: Nano-functionalization of 4D bio-engineered scaffold. In Proceedings of the 4th International Conference on Biophotonics—BioPhotonics 2019, Taipei, Taiwan, 15–18 September 2019; p. T4.3. [Google Scholar]
- Foresti, R.; Ghezzi, B.; Vettori, M.; Bergonzi, L.; Attolino, S.; Rossi, S.; Tarabella, G.; Vurro, D.; von Zeppelin, D.; Iannotta, S.; et al. 3D printed masks for powders and viruses safety protection using food grade polymers: Empirical tests. Polymers 2021, 13, 617. [Google Scholar] [CrossRef]
- Foresti, R.; Rossi, S.; Pinelli, S.; Alinovi, R.; Barozzi, M.; Sciancalepore, C.; Galetti, M.; Caffarra, C.; Lagonegro, P.; Scavia, G.; et al. Highly-defined bioprinting of long-term vascularized scaffolds with Bio-Trap: Complex geometry functionalization and process parameters with computer aided tissue engineering. Materialia 2020, 9, 100560. [Google Scholar] [CrossRef]
Model | Type | Measurement Range | Output Resolution | Sensitivity | Scale Factor |
---|---|---|---|---|---|
ADXL 335 | Analog | ±3 g | - | 300 mV/g 1 | - |
ADXL 345 | Digital | ±2 g | 10 bit | 256 LSB/g | 3.9 mg/LSB |
ADXL 350 | Digital | ±1 g | 10 bit | 512 LSB/g | 1.95 mg/LSB |
ADXL 313 | Digital | ±0.5 g | 10 bit | 1024 LSB/g | 0.952 mg/LSB |
Angle | Displacement (µm) | Detected Breathing (no IR) | Unusable Data (no IR) | Detected Breathing | Unusable Data |
---|---|---|---|---|---|
45° | 500 | 86 | 14 | 93 | 7 |
1000 | 91 | 9 | 97 | 3 | |
1500 | 93 | 7 | 99 | 1 | |
90° | 500 | 84 | 16 | 92 | 8 |
1000 | 90 | 10 | 95 | 5 | |
1500 | 95 | 5 | 98 | 2 | |
135° | 500 | 87 | 13 | 94 | 6 |
1000 | 91 | 9 | 97 | 3 | |
1500 | 95 | 5 | 99 | 1 |
What Has Happened? | Where Is the Problem? | Why Has It Happened? | Who Can Restore It? | What to Do? | Which Devices and Tools to Use? | When to Do It? | How to Do It Well? |
---|---|---|---|---|---|---|---|
Colors | Smart platform geolocation | Phenomena discrimination | Available devices and resources | Operative and validated protocols | According to acquired data and available devices | Timing and related impact on delay and quality results | Big data analysis and continuous improvement |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foresti, R.; Statello, R.; Delmonte, N.; Lo Muzio, F.P.; Rozzi, G.; Miragoli, M.; Sarli, L.; Ferrari, G.; Macaluso, C.; Maggio, M.G.; et al. Bionic for Training: Smart Framework Design for Multisensor Mechatronic Platform Validation. Sensors 2022, 22, 249. https://doi.org/10.3390/s22010249
Foresti R, Statello R, Delmonte N, Lo Muzio FP, Rozzi G, Miragoli M, Sarli L, Ferrari G, Macaluso C, Maggio MG, et al. Bionic for Training: Smart Framework Design for Multisensor Mechatronic Platform Validation. Sensors. 2022; 22(1):249. https://doi.org/10.3390/s22010249
Chicago/Turabian StyleForesti, Ruben, Rosario Statello, Nicola Delmonte, Francesco Paolo Lo Muzio, Giacomo Rozzi, Michele Miragoli, Leopoldo Sarli, Gianluigi Ferrari, Claudio Macaluso, Marcello Giuseppe Maggio, and et al. 2022. "Bionic for Training: Smart Framework Design for Multisensor Mechatronic Platform Validation" Sensors 22, no. 1: 249. https://doi.org/10.3390/s22010249
APA StyleForesti, R., Statello, R., Delmonte, N., Lo Muzio, F. P., Rozzi, G., Miragoli, M., Sarli, L., Ferrari, G., Macaluso, C., Maggio, M. G., Pisani, F., & Costantino, C. (2022). Bionic for Training: Smart Framework Design for Multisensor Mechatronic Platform Validation. Sensors, 22(1), 249. https://doi.org/10.3390/s22010249