Sinuous Antenna for UWB Radar Applications
Abstract
:1. Introduction
2. UWB Radar Applications
3. UWB Antennas
4. Frequency-Independent Antennas
4.1. Self-Complementary Geometry
4.2. Rumsey Principle
4.3. Log-Periodic Geometry
5. Sinuous Antennas
5.1. Sinunos Antenna Geometry
5.2. Size Reduction
5.3. Cavity Backing
6. Supershaped Sinuous Antenna
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ARM | Antiradiation missile |
DoA | Direction of arrival |
FCC | Federal Communications Commission |
FI | Frequency-independent |
HP | Horizontal polarization |
IT | Information technology |
LHCP | Left-handed circular polarization |
LOS | Line of sight |
LP | Log-periodic |
PRS | Passive radar seeker |
RHCP | Right-handed circular polarization |
SCA | Self-complementary antenna |
SoC | System on a chip |
SLL | Side lobe level |
TEM | Transverse electromagnetic |
UAV | Unmanned aerial vehicle |
UWB | Ultrawide band |
VP | Vertical polarization |
References
- Cicchetti, R.; Miozzi, E.; Testa, O. Wideband and UWB antennas for wireless applications: A comprehensive review. Int. J. Antennas Propag. 2017, 2017, 2390808. [Google Scholar] [CrossRef]
- Saeidi, T.; Ismail, I.; Wen, W.P.; Alhawari, A.R.H.; Mohammadi, A. Ultra-wideband antennas for wireless communication applications. Int. J. Antennas Propag. 2019, 2019, 7918765. [Google Scholar] [CrossRef]
- Lorho, N.; Hubert, W.; Lestieux, S.; Chousseaud, A.; Razban, T. Bandwidth enhancement of UWB dual-polarized antennas. PIER C 2016, 68, 57–73. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Soh, P.J.; Vandenbosh, G.A.E. Wearable ultrawideband technology—A review of ultrawideband antennas, propagation channels, and applications in wireless body area networks. IEEE Access 2018, 6, 42177–42185. [Google Scholar] [CrossRef]
- Lizhong, S. Design and experiment of a conformal monopulse antenna for passive radar applications. Int. J. Future Gener. Commun. Netw. 2015, 8, 147–160. [Google Scholar]
- Lee, D.; Shaker, G.; Melek, W. A Broadband Wrapped Bowtie Antenna for UWB Pulsed Radar Applications. IEEE Trans. Antennas Propag. 2020, 68, 7803–7812. [Google Scholar] [CrossRef]
- Piccinni, G.; Avitabile, G.; Coviello, G.; Talarico, C. Real-Time Distance Evaluation System for Wireless Localization. IEEE Trans. Circuits Syst. I 2020, 67, 3320–3330. [Google Scholar] [CrossRef]
- Cadilhon, B.; Cassany, P.; Modin, P.; Diot, J.; Bertrand, V.; Pecastaing, L. Ultra wideband anternnas for high pulsed power applications. In Ultra Wideband Communications; Martin, M.A., Ed.; InTech: London, UK, 2011; pp. 277–306. [Google Scholar]
- Graham, A. Communications, Radar and Electronic Warfare; Wiley: Chichester, UK, 2011. [Google Scholar]
- Jeanette, Q.; Tan, O.; Romero, A. Jammer-Nulling Transmit-Adaptive Radar Against Knowledge-Based Jammers in Electronic Warfare. IEEE Access 2019, 7, 181899. [Google Scholar]
- Frid, H.; Malmström, J.; Jonsson, B.L.G. Determining Direction-of-Arrival Accuracy for Installed Antennas by Postprocessing of Far-Field Data. Radio Sci. 2019, 54, 1204–1211. [Google Scholar] [CrossRef]
- Schantz, H.G. The Art and Science of Ultrawideband Antennas, 2nd ed.; Artech House: Boston, MA, USA, 2015. [Google Scholar]
- Bia, P.; Caratelli, D.; Mescia, L.; Gielis, J. Analysis and Synthesis of Supershaped Dielectric Lens Antennas. IET Microw. Antennas Propag. 2015, 9, 1497–1504. [Google Scholar] [CrossRef]
- Liang, S.D. Sense-through-wall human detection based on UWB radar sensors. Signal Process. 2016, 136, 117–124. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, H.; Lyu, T.; Xu, L.; Cao, C.; Gulliver, T.A. Ultra-wide band impulse radar for life detection using wavelet packet decomposition. Phys. Commun. 2018, 29, 31–47. [Google Scholar] [CrossRef]
- Zhao, G.; Liang, Q.; Durrani, T.S. UWB radar target detection based on hidden markov models. IEEE Access 2018, 6, 28702–28711. [Google Scholar] [CrossRef]
- Liang, X.; Deng, J.; Zhang, H.; Gulliver, T.A. Ultra-Wideband Impulse Radar Through-Wall Detection of Vital Signs. Sci. Rep. 2018, 8, 13367. [Google Scholar] [CrossRef] [Green Version]
- Gu, C.; Lee, C. Assessment of human respiration patterns via noncontact sensing using doppler multi-radar system. Sensors 2015, 15, 6383–6398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kocur, D.; Novák, D.; Švecová, M. Multiple Person Localization Based on Their Vital Sign Detection Using UWB Sensor. In Microwave Systems and Applications; Goudos, S.K., Ed.; InTech: London, UK, 2017; pp. 399–422. [Google Scholar]
- Iyer, B.; Pathak, N.P. Multiband Non-Invasive Microwave Sensor: Design and Analysis; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Qian, Z.; Wang, T.; Chen, J. Compatibility Studies of IMT System and Automotive Radar in the Frequency Range 24.5–25.5 GHz. In Proceedings of the 2018 IEEE 18th International Conference on Communication Technology (ICCT), Chongqing, China, 8–11 October 2018; IEEE: New York, NY, USA, 2018; pp. 505–508. [Google Scholar]
- Žiga, M.; Galajda, P.; Slovák, S.; Kmec, M. Determination of the quality of frying oil based on UWB impedance spectrometer. In Proceedings of the 16th International Radar Symposium (IRS 2015), Dresden, Germany, 24–26 June 2015; pp. 955–960. [Google Scholar]
- Kocur, D. UWB Technology and Its Applications, 1st ed.; IntechOpen: London, UK, 2019. [Google Scholar]
- Džunda, M.; Dzurovcin, P.; Kal’avský, P.; Korba, P.; Cséfalvay, Z.; Hovanec, M. The UWB Radar Application in the Aviation Security Systems. Appl. Sci. 2021, 11, 4556. [Google Scholar] [CrossRef]
- Taylor, J.D.; Boryssenko, A.; Boryssenko, E. Signals, Targets, and Advanced Ultrawideband Radar Systems. In Advanced Ultrawideband Radar: Signals, Targets, and Applications; Taylor, J.D., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 65–103. [Google Scholar]
- Hämäläinen, M.; Mucchi, L.; Caputo, S.; Biotti, L.; Ciani, L.; Marabissi, D.; Patrizi, G. Ultra-Wideband Radar-Based Indoor Activity Monitoring for Elderly Care. Sensors 2021, 21, 3158. [Google Scholar] [CrossRef]
- De Martino, A. Introduction to Modern EW Systems; Artech House: Norwood, MA, USA, 2018; pp. 76–102. [Google Scholar]
- Zhou, T.; Pang, B.; Dai, D.; Wu, H.; Wang, X. Monopulse forward-looking imaging algorithm based Levenberg-Marquardt optimisation. J. Eng. 2019, 2019, 6593–6597. [Google Scholar] [CrossRef]
- Wang, J.; Xu, X.; Dai, H.; Sun, D.; Qiao, H. Method for four-channel monopulse radar to resist dual-source angle deception jamming. J. Eng. 2019, 2019, 7493–7497. [Google Scholar]
- Rutkowski, A.; Kawalec, A. Some of Problems of Direction Finding of Ground-Based Radars Using Monopulse Location System Installed on Unmanned Aerial Vehicle. Sensors 2022, 20, 5186. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.N. Antenna Elements for Impulse Radio. In Ultra-Wideband Antennas and Propagation for Communications, Radar and Imaging; Allen, B., Dohler, M., Okon, E.E., Malik, W.Q., Brown, A.K., Edwards, D.J., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2007; pp. 147–162. [Google Scholar]
- Nikolaou, S.; Quddious, A. Antennas for UWB Applications. In UWB Technology—Circuits and Systems; Kheir, M., Ed.; Intechopen: London, UK, 2020. [Google Scholar]
- Zhang, Y.; Liu, J.; Liang, Z.; Long, Y. A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers. Int. J. Antennas Propag. 2014, 2014, 980120. [Google Scholar] [CrossRef]
- Pepe, D.; Vallozzi, L.; Rogier, H.; Zito, D. Planar Differential Antenna for Short-Range UWB Pulse Radar Sensor. Antennas Wirel. Propag. Lett. 2013, 12, 1527–1530. [Google Scholar] [CrossRef] [Green Version]
- Amini, A.; Oraizi, H.; Chaychi zadeh, M.A. Miniaturized UWB Log-Periodic Square Fractal Antenna. Antennas Wirel. Propag. Lett. 2015, 14, 1322–1325. [Google Scholar] [CrossRef]
- Dong, Y.; Choi, J.; Itoh, T. Vivaldi Antenna With Pattern Diversity for 0.7 to 2.7 GHz Cellular Band Applications. Antennas Wirel. Propag. Lett. 2018, 17, 247–250. [Google Scholar] [CrossRef]
- Zhang, P.; Li, J. Compact UWB and Low-RCS Vivaldi Antenna Using Ultrathin Microwave-Absorbing Materials. Antennas Wirel. Propag. Lett. 2017, 16, 1965–1968. [Google Scholar] [CrossRef]
- Wu, A.; Guan, B. Printed Slot Antennas for Various Wideband Applications Using Shape Blending. Int. J. RF Microw. Comput.-Aided Eng. 2016, 26, 3–12. [Google Scholar] [CrossRef]
- Kim, S.-W.; Choi, D.-Y. Implementation of rectangular slit-inserted ultra-wideband tapered slot antenna. SpringerPlus 2016, 5, 1387. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Ali, T.; Pai, M.M. Electromagnetic Metamaterials: A New Paradigm of Antenna Design. IEEE Access 2021, 9, 18722–18751. [Google Scholar] [CrossRef]
- Mistry, K.K.; Lazaridis, P.I.; Zaharis, Z.D.; Loh, T.H. Design and Optimization of Compact Printed Log-Periodic Dipole Array Antennas with Extended Low-Frequency Response. Electronics 2021, 10, 2044. [Google Scholar] [CrossRef]
- Yang, G. On Conditions for Constant Radiation Characteristics for Log-Periodic Array Antennas. IEEE Trans. Antennas Propag. 2010, 58, 1521–1526. [Google Scholar] [CrossRef]
- Sammeta, R.; Filipovic, D.S. Quasi Frequency-Independent Increased Bandwidth Planar Log-Periodic Antenna. IEEE Trans. Antennas Propag. 2014, 62, 1937–1944. [Google Scholar] [CrossRef]
- Ha, J.; Filipovic, D.S. Electrothermal Design of Bidirectional Wide-Boom Log-Periodic Antennas. IEEE Trans. Antennas Propag. 2017, 65, 1661–1669. [Google Scholar] [CrossRef]
- Ha, J.; Filipovic, D.S. Wideband and Efficient Slot Cavity Backing for Unidirectional Log-Periodic Antenna. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 299–302. [Google Scholar] [CrossRef]
- Wei, X.; Liu, J.; Long, Y. Printed Log-Periodic Monopole Array Antenna with a Simple Feeding Structure. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 58–61. [Google Scholar] [CrossRef]
- Zengin, F.; Akkaya, E.; Güneş, F.; Ecevit, F.N. Printed log-periodic trapezoidal dipole array antenna with a balun-feed for ultra-wideband applications. IET Microw. Antennas Propag. 2018, 12, 1570–1574. [Google Scholar] [CrossRef]
- DuHammel, R.H. Dual Polarized Sinuous Antennas. U.S. Patent 4658262, 14 April 1987. [Google Scholar]
- Buck, M.C.; Filipovic, D.S. Two-Arm Sinuous Antennas. IEEE Trans. Antennas Propag. 2008, 56, 1229–1235. [Google Scholar] [CrossRef]
- Crocker, D.A.; Scott, W.R., Jr. On the Design of Sinuous Antennas for UWB Radar Applications. IEEE Antennas Wireless Propag. Lett. 2019, 18, 1347–1351. [Google Scholar] [CrossRef]
- Kang, Y.; Kim, K.; Scott, W.R., Jr. Modification of Sinuous Antenna Arms for UWB Radar Applications. IEEE Trans. Antennas Propag. 2015, 63, 5229–5234. [Google Scholar] [CrossRef]
- Buck, M.C.; Filipovic, D.S. Split-Beam Mode Four-Arm Slot Sinuous Antenna. IEEE Antennas Wirel. Propag. Lett. 2004, 3, 83–86. [Google Scholar] [CrossRef]
- Gamec, J.; Repko, M.; Gamcová, M.; Gladišová, I.; Kurdel, P.; Nekrasov, A.; Fidge, C. Low Profile Sinuous Slot Antenna for UWB Sensor Networks. Electronics 2019, 8, 127. [Google Scholar] [CrossRef] [Green Version]
- Agastra, E.; Lucci, L.; Pelosi, G.; Selleri, S. High Gain Compact Strip and Slot UWB Sinuous Antennas. Int. J. Antennas Propag. 2012, 2012, 721412. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.U.; Jha, R.M. Electromagnetic Design and Performance Analysis of Airborne Radomes: Trends and Perspectives. IEEE Antennas Propag. Mag. 2014, 56, 276–298. [Google Scholar] [CrossRef]
- Byun, G.; Choo, H.; Ling, H. Optimum Placement of DF Antenna Elements for Accurate DOA Estimation in a Harsh Platform Environment. IEEE Trans. Antennas Propag. 2013, 61, 4783–4791. [Google Scholar] [CrossRef]
- Hohlfeld, R.; Cohen, N. Self-similarity and the geometric requirements for frequency independence in antennae. Fractals 1999, 7, 79–84. [Google Scholar] [CrossRef]
- Rumsey, V.H. Frequency Independent Antennas; Academic Press: New York, NY, USA, 1966. [Google Scholar]
- Mayes, P.A. Frequency-independent antennas and broad-band derivatives thereof. Proc. IEEE 1992, 80, 103–112. [Google Scholar] [CrossRef]
- Mushiake, Y. Self-Complementary Antennas: Principles of Self-Complementarity for Constant Impedance; Springer: London, UK, 1992. [Google Scholar]
- Jeong, J.Y.; Chung, J.Y. Ultra wideband spherical self-complementary antenna with capacitive and inductive loading. J. Electr. Eng. Technol. 2019, 14, 833–838. [Google Scholar] [CrossRef]
- Takemura, N. Inverted-FL antenna with self-complementary structure. IEEE Trans. Antennas Propag. 2009, 57, 3029–3034. [Google Scholar] [CrossRef]
- Mushiake, Y. A report on Japanese development of antennas: From the Yagi-Uda antenna to self-complementary antennas. IEEE Antennas Propag. Mag. 2004, 46, 47–60. [Google Scholar] [CrossRef]
- Nakano, H. Frequency-independent antennas: Spirals and log–periodics. In Modern Antenna Handbook; Balanis, C.A., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 263–323. [Google Scholar]
- Sammeta, R.; Filipovic, D.S. Improved Efficiency Lens-Loaded Cavity-Backed Transmit Sinuous Antenna. IEEE Trans. Antennas Propag. 2014, 62, 6000–6009. [Google Scholar] [CrossRef]
- Crocker, D.A.; Scott, W.R., Jr. An Unbalanced Sinuous Antenna for Near-Surface Polarimetric Ground-Penetrating Radar. IEEE Open J. Antennas Propag. 2020, 1, 435–447. [Google Scholar] [CrossRef]
- Cukierman, A.; Lee, A.T.; Scott; Raum, C.; Suzuki, A.; Westbrook, B. Hierarchical sinuous-antenna phased array for millimeter wavelengths. Appl. Phys. Lett. 2018, 112, 132601. [Google Scholar] [CrossRef] [Green Version]
- Ganesan, I.; Kaliyappan, K.; Iyampalam, P. Self Complementary Frequency Independent Triple Band Sinuous Antenna Array for Wireless Applications. Electromagn. Res. Lett. 2018, 78, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Edwards, J.M.; O’Brient, R.; Lee, A.T.; Rebeiz, G.M. Dual-polarized sinuous antennas on extended hemispherical silicon lenses. IEEE Trans. Antennas Propag. 2012, 60, 4082–4091. [Google Scholar] [CrossRef]
- Volakis, J.L. Small Antennas: Miniaturization Techniques & Applications; McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- O’Brien, J.M.; Grandfield, J.E.; Mumcu, G.; Weller, T.M. Miniaturization of a Spiral Antenna Using Periodic Z-Plane Meandering. IEEE Trans. Antennas Propag. 2015, 63, 1843–1848. [Google Scholar] [CrossRef]
- Klemp, O.; Schultz, M.; Eul, H. Miniaturization techniques for logarithmically periodic planar-antennas. In Proceedings of the IEEE 15th International Symposium on Personal, Indoor and Mobile Radio Communications, Barcelona, Spain, 5–8 September 2004; pp. 412–416. [Google Scholar]
- Lamacchia, C.M.; Gallo, M.; Mescia, L.; Bia, P.; Gaetano, D.; Canestri, C.; Mitrano, C.; Manna, A. Novel Miniaturized Sinuous Antenna for UWB Applications. In Proceedings of the 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, Rome, Italy, 29 August–5 September 2020. [Google Scholar]
- Morgan, T.E. Spiral antennas for ESM. IEE Proc. 1985, 132, 245–251. [Google Scholar] [CrossRef]
- Zheng, S.; Gao, S.; Yin, Y.; Luo, Q.; Yang, X.; Hu, W.; Ren, X.; Qin, F. A Broadband Dual Circularly Polarized Conical Four-Arm Sinuous Antenna. IEEE Trans. Antennas Propag. 2018, 66, 71–80. [Google Scholar] [CrossRef]
- Lamacchia, C.M.; Gallo, M.; Mescia, L.; Bia, P.; Manna, A.; Canestri, C.; Gaetano, D. Non-Conventional Cavity Backed Sinuous Antenna for UWB Radar Applications. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 5–10 July 2020. [Google Scholar]
- Scorrano, L.; Calcaterra, A.; Bia, P.; Maddio, S.; Pelosi, G.; Righini, M.; Selleri, S. A compact and lightweight ultra-wideband interferometer for direct finding applications. In Proceedings of the URSI GASS, Rome, Italy, 29 August–5 September 2020. [Google Scholar]
- Mevoli, G.; Lamacchia, C.M.; Bia, P.; Manna, A.; Caratelli, D.; Mescia, L. Supershaped sinuous antenna for UWB radar applications. In Proceedings of the 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Rome, Italy, 28 August–4 September 2021. [Google Scholar]
- Mescia, L.; Bia, P.; Caratelli, D.; Chiapperino, M.A.; Stukach, O.; Gielis, J. Electromagnetic Mathematical Modeling of 3D Supershaped Dielectric Lens Antennas. Math. Probl. Eng. 2016, 2016, 8130160. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mescia, L.; Mevoli, G.; Lamacchia, C.M.; Gallo, M.; Bia, P.; Gaetano, D.; Manna, A. Sinuous Antenna for UWB Radar Applications. Sensors 2022, 22, 248. https://doi.org/10.3390/s22010248
Mescia L, Mevoli G, Lamacchia CM, Gallo M, Bia P, Gaetano D, Manna A. Sinuous Antenna for UWB Radar Applications. Sensors. 2022; 22(1):248. https://doi.org/10.3390/s22010248
Chicago/Turabian StyleMescia, Luciano, Gianvito Mevoli, Claudio Maria Lamacchia, Michele Gallo, Pietro Bia, Domenico Gaetano, and Antonio Manna. 2022. "Sinuous Antenna for UWB Radar Applications" Sensors 22, no. 1: 248. https://doi.org/10.3390/s22010248
APA StyleMescia, L., Mevoli, G., Lamacchia, C. M., Gallo, M., Bia, P., Gaetano, D., & Manna, A. (2022). Sinuous Antenna for UWB Radar Applications. Sensors, 22(1), 248. https://doi.org/10.3390/s22010248