A Dual-Purpose Camera for Attitude Determination and Resident Space Object Detection on a Stratospheric Balloon
Abstract
:1. Introduction
1.1. Dual-Purpose Star Tracker for RSO Detection
1.2. Research Overview
2. Dual-Purpose Camera Technology Demonstration Payload—STARDUST
2.1. Hardware Description
2.2. Software Description
- Initialize Camera Function:
- Capture Image Function:
- Extract Centroids Function:
- Detect RSOs Function:
- Lost-In-Space Attitude Determination Function:
- Tracking Attitude Determination Function:
- Save Health and Sensor Data Function:
3. Star Tracker Attitude Determination
3.1. The Lost-in-Space Mode
3.2. The Tracking Mode
4. RSO Detection
4.1. Extracting Centroids
4.2. Detecting RSOs
5. Image Collection
5.1. Field Campaigns
5.2. STRATOS Campaign
6. Results
6.1. Real-Time Attitude Determination
6.2. Real-Time RSO Detection
7. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, N. The Collision of Iridium 33 and Cosmos 2251: The Shape of Things to Come. In Proceedings of the 60th International Astronautical Congress 2009, Daejeon, Republic of Korea, 16–19 October 2009; NASA Technical Reports Server. Available online: https://ntrs.nasa.gov/api/citations/20100002023/downloads/20100002023.pdf (accessed on 23 October 2023).
- Hildreth, S.; Arnold, A. Threats to U.S. National Security Interests in Space: Orbital Debris Mitigation and Removal; Congressional Research Service CRS Report, 8 January 2014; UNT Digital Library. Available online: https://sgp.fas.org/crs/natsec/R43353.pdf (accessed on 23 October 2023).
- Kunalakantha, P.; Baires, A.V.; Dave, S.; Clark, R.; Chianelli, G.; Lee, R.S.K. Stratospheric Night Sky Imaging Payload for Space Situational Awareness (SSA). Sensors 2023, 23, 6595. [Google Scholar] [CrossRef] [PubMed]
- Dave, S.; Clark, R.; Lee, R.S.K. RSOnet: An Image-Processing Framework for a Dual-Purpose Star Tracker as an Opportunistic Space Surveillance Sensor. Sensors 2022, 22, 5688. [Google Scholar] [CrossRef] [PubMed]
- Dave, S.; Lee, R. Feasibility of a Virtual Constellation Using Dual-Purpose Star Trackers for Space Domain Awareness and Applications. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference 2022, Maui, HI, USA, 26–30 September 2022; AMOS Archives. Available online: https://amostech.com/TechnicalPapers/2022/Poster/Dave.pdf (accessed on 23 October 2023).
- Spiller, D.; Edoardo, M.; Schiattarella, V.; Curti, F.; Facchinetti, C.; Ansalone, L.; Tuozzi, A. On-Orbit Recognition of Resident Space Objects by Using Star Trackers. Acta Astronaut. 2020, 177, 478–496. [Google Scholar] [CrossRef]
- Xu, T.; Yang, X.; Fu, Z. A Staring Tracking Measurement Method of Resident Space Objects Based on the Star Tacker. Photonics 2023, 10, 288. [Google Scholar] [CrossRef]
- Bernander, K. A Method for Detecting Resident Space Objects and Orbit Determination Based on Star Trackers and Image Analysis. Master’s Thesis, Uppsala University, Uppsala, Sweden, 2014. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2:765745 (accessed on 23 October 2023).
- Plotke, E.; Lai, P.; Chan, A.; Ewart, R.; Miller, K.; Griesbach, J. Dual Use Star Tracker and Space Domain Awareness Sensor In-Space Test. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference 2021, Maui, HI, USA, 19–22 September 2021; AMOS Archives. Available online: https://amostech.com/TechnicalPapers/2021/Poster/Plotke.pdf (accessed on 23 October 2023).
- Sundberg, T.; Lindström, S.; Rasmusson, O.; Nylund, M.; Lyke, J.; Fronterhouse, D. The SSA Instrument on SPARC-1—A Star Tracker for Detection and Orbit Determination of Resident Space Objects. In Proceedings of the First International Orbital Debris Conference 2019, Houston, TX, USA, 9–12 December 2019. Available online: https://www.hou.usra.edu/meetings/orbitaldebris2019/pdf/6059.pdf (accessed on 23 October 2023).
- Delabie, T.; Schutter, J.; Vandenbussche, B. Robustness and Efficiency Improvements for Star Tracker Attitude Estimation. J. Guid. Control Dyn. 2015, 38, 2108–2121. [Google Scholar] [CrossRef]
- Sarvi, M.N.; Abbasi-Moghadam, D.; Abolghasemi, M.; Hoseini, H. Design and Implementation of a Star-Tracker for LEO Satellite. Optik 2020, 208, 164343. [Google Scholar] [CrossRef]
- Erlank, A.; Steyn, W.H. Development of CubeStar a CubeSat-Compatible Star Tracker. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2013. Available online: https://core.ac.uk/download/pdf/37420644.pdf (accessed on 23 October 2023).
- Mastrofini, M.; Goracci, G.; Agostinelli, I.; Farissi, S.; Curti, F. Resident space objects detection and tracking based on artificial intelligence. In Proceedings of the AAS/AIAA Astrodynamics Specialist Conference 2022, Charlotte, NC, USA, 7–11 August 2022; Available online: https://www.researchgate.net/publication/362680170_RESIDENT_SPACE_OBJECTS_DETECTION_AND_TRACKING_BASED_ON_ARTIFICIAL_INTELLIGENCE (accessed on 23 October 2023).
- Jordan, J.; Posada, D.; Gillette, M.; Zuehlke, D.; Henderson, T. Quasi Real-Time Autonomous Satellite Detection and Orbit Estimation. In Real-Time Image Processing and Deep Learning; SPIE: Orlando, FL, USA, 2023. [Google Scholar]
- Zakharov, A.; Prokhorov, M.; Tuchin, M.; Zhukov, A. Minimum star tracker specifications required to achieve a given attitude accuracy. Astrophys. Bull. 2013, 68, 481–493. [Google Scholar] [CrossRef]
- ST-16RT2 Datasheet, High Performance Star Tracker. Rocket Lab, Inc. Available online: https://www.rocketlabusa.com/assets/Uploads/ST-16RT2-Datasheet-v3.pdf (accessed on 25 October 2023).
- CT-2020, Star Tracker. Ball Aerospace. Available online: https://www.ball.com/getattachment/9cf8d772-2ec8-4d54-ba43-53e140fa6083/D3408_CT2020_Updated_20211221.pdf (accessed on 25 October 2023).
- Raspberry Pi High Quality Camera. Raspberry Pi Foundation. Pencoed, Wales. Available online: https://www.raspberrypi.com/products/raspberry-pi-high-quality-camera/ (accessed on 25 October 2023).
- IDS UI-3370CP Rev. 2 Camera. IDS Imaging Inc. Obersulm, Gernmany. Available online: https://www.ids-imaging.us/store_us/ui-3370cp-rev-2.html (accessed on 25 October 2023).
- Alvium 1500 C-500 m Camera. Allied Vision. Burnaby, Canada. Available online: https://www.alliedvision.com/en/products/alvium-configurator/alvium-1500-c/500/ (accessed on 25 October 2023).
- DC-DC Converter, PYBE30 Series. CUI Inc. Tualatin, USA. Available online: https://www.cui.com/product/dc-dc-converters/isolated/pybe30-series (accessed on 25 October 2023).
- Liebe, C. Accuracy performance of star trackers—A tutorial. IEEE Trans. Aerosp. Electron. Syst. 2002, 38, 587–599. [Google Scholar] [CrossRef]
- Sun, T.; Xing, F.; Wang, X.; You, Z.; Chu, D. An Accuracy Measurement Method for Star Trackers Based on Direct Astronomic Observation. Sci. Rep. 2016, 6, 22593. [Google Scholar] [CrossRef] [PubMed]
- Cole, C. Fast Star-Pattern Recognition Using Planar Triangles. J. Guid. Control Dyn. 2006, 29, 64–71. [Google Scholar] [CrossRef]
- Huffman, K. Designing Star Trackers to Meet Micro-Satellite Requirements. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2006. Available online: https://dspace.mit.edu/handle/1721.1/36170 (accessed on 26 October 2023).
- Yale Bright Star Catalog. Harvard University. Available online: http://tdc-www.harvard.edu/catalogs/bsc5.html (accessed on 26 October 2023).
- Cheng, Y.; Shuster, M. An Improvement to the Implementation of the QUEST Algorithm. J. Guid. Control Dyn. 2014, 37, 301–305. [Google Scholar] [CrossRef]
- Sun, T.; Xing, F.; Wang, X.; Li, J.; Wei, M.; You, Z. Effective star tracking method based on optical flow analysis for star trackers. Appl. Opt. 2016, 55, 10335–10340. [Google Scholar] [CrossRef] [PubMed]
- Attitude from Angular Rate, AHRS 0.3.1 Documentation. ahrs.readthedocs.io. Available online: https://ahrs.readthedocs.io/en/latest/filters/angular.html (accessed on 26 October 2023).
- Bolelli, F.; Allegretti, S.; Baraldi, L.; Grana, C. Spaghetti Labeling: Directed Acyclic Graphs for Block-Based Connected Components Labeling. IEEE Trans. Image Process. 2020, 29, 1999–2012. [Google Scholar] [CrossRef] [PubMed]
- Lang, D.; Hogg, D.W.; Mierle, K.; Blanton, M.; Roweis, S. Astrometry.net: Blind astrometric calibration of arbitrary astronomical images. Astron. J. 2010, 139, 1782–1800. [Google Scholar] [CrossRef]
- Lohmann, A. Star Imager for Nanosatellite Applications. Master’s Thesis, York University, Toronto, ON, Canada, 2017. Available online: https://yorkspace.library.yorku.ca/server/api/core/bitstreams/50ecf197-cbc3-4503-8f34-c21f5456725d/content (accessed on 26 October 2023).
- Clark, R. Technology for Low Resolution Space Based RSO Detection and Characterisation. Ph.D. Dissertation, York University, Toronto, ON, Canada, 2022. Available online: https://yorkspace.library.yorku.ca/server/api/core/bitstreams/e3f3e02e-b9fc-4440-9313-ca9ba4e8d272/content (accessed on 26 October 2023).
RSO Number | Total Detections [Images] | Longest Consecutive Detection [Images] |
---|---|---|
1 | 53 | 18 |
2 | 34 | 34 |
3 | 40 | 40 |
4 | 36 | 36 |
5 | 14 | 14 |
6 | 66 | 55 |
7 | 31 | 16 |
8 | 106 | 106 |
9 | 13 | 6 |
10 | 159 | 159 |
11 | 117 | 117 |
Total RSOs: 11 | Total Detections: 669 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chianelli, G.; Kunalakantha, P.; Myhre, M.; Lee, R.S.K. A Dual-Purpose Camera for Attitude Determination and Resident Space Object Detection on a Stratospheric Balloon. Sensors 2024, 24, 71. https://doi.org/10.3390/s24010071
Chianelli G, Kunalakantha P, Myhre M, Lee RSK. A Dual-Purpose Camera for Attitude Determination and Resident Space Object Detection on a Stratospheric Balloon. Sensors. 2024; 24(1):71. https://doi.org/10.3390/s24010071
Chicago/Turabian StyleChianelli, Gabriel, Perushan Kunalakantha, Marissa Myhre, and Regina S. K. Lee. 2024. "A Dual-Purpose Camera for Attitude Determination and Resident Space Object Detection on a Stratospheric Balloon" Sensors 24, no. 1: 71. https://doi.org/10.3390/s24010071
APA StyleChianelli, G., Kunalakantha, P., Myhre, M., & Lee, R. S. K. (2024). A Dual-Purpose Camera for Attitude Determination and Resident Space Object Detection on a Stratospheric Balloon. Sensors, 24(1), 71. https://doi.org/10.3390/s24010071