FedSGDCOVID: Federated SGD COVID-19 Detection under Local Differential Privacy Using Chest X-ray Images and Symptom Information
Abstract
:1. Introduction
- We proposed a higher privacy-preserving FL model for COVID-19 detection based on symptom information and chest X-ray images collected from multiple sources (that is, hospitals) without sharing data among data owners by adding the differential privacy stochastic gradient descent (DP-SGD) resilient to adaptive attacks auxiliary information;
- We observed that adding the spatial pyramid pooling (SPP) layer in 2D convolutional neural networks (CNNs) achieve better accuracy on chest X-ray images;
- We demonstrated that the accuracy of FL for COVID-19 detection reduces significantly for Non-IID data owing to the varying size and distribution of local datasets among different clients. We thoroughly analyzed several design choices (for example, the total number of clients, amount of multi-client parallelism, and computations per client) to improve the model’s accuracy with Non-IID data;
- We provided a strategy to keep the robustness of our privacy-preserving FL model to ensure the model’s security and accuracy by keeping the fraction of the model constant, scaling up the total number of clients and noise proportionally.
2. Related Works
3. Approach
3.1. Federated Learning
Algorithm 1 FederatedAveraging. The K clients are indexed by k, B is the local minibatch size, E is the number of local epochs, and is the learning rate. |
Service executes:
Client update():
|
3.2. Differential Privacy Stochastic Gradient Descent (DP-SGD)
3.3. System Model
- Clients synchronize with the server
- Clients compute the local models based on individual data
- Server aggregates global model
3.4. Network Models Designed for the Recognition of COVID-19 Using Chest X-ray Images
- 5 × 5 CNN
- ResNets
- 3 × 3 CNN
- 3 × 3 CNN-SPP
3.5. Network Models Designed for the Recognition of COVID-19 Using Symptom Data
- 1DCNN
- ANN
- LSTM
4. Experiment
4.1. Data Collection and Processing
4.1.1. Chest X-ray Dataset
4.1.2. Symptom Dataset
- Removing the columns containing unique values because these columns provide no useful information for our model;
- Converting categorical data to one-hot encoding data as follows: 1 represents “Yes” and 0 represents “No”;
- For each COVID-19 class, we randomly kept 10% for testing and used the rest (90%) for training.
4.2. Improvement in COVID-19 Detection Based on Chest X-ray Images and 3 × 3 CNN-SPP
4.3. Improvement in COVID-19 Detection Based on Symptom Data and ANN
4.4. IID and Non-IID
4.5. Non-IID Improvement
4.5.1. Non-IID with Different Numbers of Client
4.5.2. Increasing Client-Fraction
4.5.3. Increasing Computation per Client
4.5.4. NonIID and Refined NonIID
4.5.5. Experiments on Symptom Data
4.6. Privacy Improvement for Federated COVID-19 Detection Model Using DP-SGD
4.6.1. Trade-Off between the Model Privacy and Accuracy
4.6.2. Robustness of Differential Privacy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- CNN’s John Bonifield. Vaccinating Whole World against COVID-19 Won’t Happen Until 2024, Manufacturer Says. 2020. Available online: https://edition.cnn.com/world/live-news/coronavirus-pandemic-09-22-20-intl/h_d87943489d99be3975c8407911232cb9 (accessed on 12 June 2021).
- Chen, J.; Wang, R.; Gilby, N.B.; Wei, G.-W. Omicron variant (B. 1.1. 529): Infectivity, vaccine breakthrough, and antibody resistance. J. Chem. Inf. Model. 2022, 62, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Dong, X.-P. Rapid global spread of the SARS-CoV-2 delta (B. 1.617. 2) variant: Spatiotemporal variation and public health impact. Zoonoses 2021, 1. [Google Scholar] [CrossRef]
- Khalili, M.; Karamouzian, M.; Nasiri, N.; Javadi, S.; Mirzazadeh, A.; Sharifi, H. Epidemiological characteristics of COVID-19: A systematic review and meta-analysis. Epidemiol. Infect. 2020, 148, e130. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, J.B.; Tong, E.J.; O’Keefe, G.D.; Tong, D.C. Description of symptom course in a telemedicine monitoring clinic for acute symptomatic COVID-19: A retrospective cohort study. BMJ Open 2021, 11, e044154. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Xu, Y.; Sun, C.; Wang, X.; Guo, Y.; Qiu, S.; Ma, K. A systematic review of asymptomatic infections with COVID-19. J. Microbiol. Immunol. Infect. 2021, 51, 12–16. [Google Scholar] [CrossRef]
- Gao, Z.; Xu, Y.; Sun, C.; Wang, X.; Guo, Y.; Shi Qiu, S.; Ma, K. Asymptomatic patients as a source of COVID-19 infections: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 98, 180–186. [Google Scholar]
- Drew, D.A.; Nguyen, L.H.; Steves, C.J.; Menni, C.; Freydin, M.; Varsavsky, T.; Sudre, C.H.; Cardoso, M.J.; Ourselin, S.; Wolf, J.; et al. Rapid implementation of mobile technology for real-time epidemiology of COVID-19. Science 2020, 368, 1362–1367. [Google Scholar] [CrossRef]
- Menni, C.; Valdes, A.M.; Freidin, M.B.; Sudre, C.H.; Nguyen, L.H.; Drew, D.A.; Ganesh, S.; Varsavsky, T.; Cardoso, M.J.; Moustafa, J.S.E.-S.; et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat. Med. 2020, 26, 1037–1040. [Google Scholar] [CrossRef]
- Bastiani, L.; Fortunato, L.; Pieroni, S.; Bianchi, F.; Adorni, F.; Prinelli, F.; Giacomelli, A.; Pagani, G.; Maggi, S.; Trevisan, C.; et al. Rapid COVID-19 screening based on self-reported symptoms: Psychometric assessment and validation of the EPICOVID19 short diagnostic scale. J. Med. Internet Res. 2021, 23, e23897. [Google Scholar] [CrossRef]
- Chung, M.; Bernheim, A.; Mei, X.; Zhang, N.; Huang, M.; Zeng, X.; Cui, J.; Xu, W.; Yang, Y.; Fayad, Z.A.; et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology 2020, 295, 202–207. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Dong, C.; Hu, Y.; Li, C.; Ren, Q.; Zhang, X.; Shi, H.; Zhou, M. Temporal changes of CT findings in 90 patients with COVID-19 pneumonia: A longitudinal study. Radiology 2020, 296, E55–E64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horry, M.J.; Chakraborty, S.; Paul, M.; Ulhaq, A.; Pradhan, B.; Saha, M.; Shukla, N. COVID-19 detection through transfer learning using multimodal imaging data. IEEE Access 2020, 8, 149808–149824. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhou, T.; Lu, Q.; Wang, X.; Zhu, C.; Sun, H.; Wang, Z.; Lo, S.K.; Wang, F.-Y. Dynamic fusion-based federated learning for COVID-19 detection. IEEE Internet Things J. 2021, 8, 15884–15891. [Google Scholar] [CrossRef]
- Khuzani, A.Z.; Heidari, M.; Shariati, S.A. COVID-Classifier: An automated machine learning model to assist in the diagnosis of COVID-19 infection in chest X-ray images. Sci. Rep. 2021, 11, 9887. [Google Scholar] [CrossRef]
- Voigt, P.; Von dem Bussche, A. The eu general data protection regulation (gdpr). In A Practical Guide, 1st ed.; Springer International Publishing: Cham, Switzerland, 2017; Volume 10, p. 3152676. [Google Scholar]
- McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from decentralized data. Artif. Intell. Stat. 2017, 54, 1273–1282. [Google Scholar]
- Kumar, R.; Khan, A.A.; Zhang, S.; Wang, W.Y.; Abuidris, Y.; Amin, W.; Kumar, J. Blockchain-federated-learning and deep learning models for COVID-19 detection using ct imaging. IEEE Sens. J. 2021, 21, 16301–16314. [Google Scholar] [CrossRef]
- Wang, L.; Lin, Z.Q.; Wong, A. Covid-net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci. Rep. 2020, 10, 19549. [Google Scholar] [CrossRef]
- Yan, B.; Wang, J.; Cheng, J.; Zhou, Y.; Zhang, Y.; Yang, Y.; Liu, L.; Zhao, H.; Wang, C.; Liu, B. Experiments of federated learning for COVID-19 chest X-ray images. Proc. Int. Conf. Artif. Intell. Secur. 2021, 1423, 41–53. [Google Scholar]
- Fredrikson, M.; Jha, S.; Ristenpart, T. Model inversion attacks that exploit confidence information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16 October 2015; pp. 1322–1333. [Google Scholar]
- Melis, L.; Song, C.; De Cristofaro, E.; Shmatikov, V. Exploiting unintended feature leakage in collaborative learning. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–22 May 2019; pp. 691–706. [Google Scholar]
- Phong, L.T.; Aono, Y.; Hayashi, T.; Wang, L.; Moriai, S. Privacy-preserving deep learning via additively homomorphic encryption. IEEE Trans. Inf. Forensics Secur. 2017, 13, 1333–1345. [Google Scholar] [CrossRef]
- Zhu, L.; Han, S. Deep leakage from gradients. IEEE Trans. Inf. Forensics Secur. 2020, 32, 17–31. [Google Scholar]
- Afshar, P.; Heidarian, S.; Naderkhani, F.; Oikonomou, A.; Plataniotis, K.N.; Mohammadi, A. Covid-caps: A capsule network-based framework for identification of COVID-19 cases from X-ray images. Pattern Recognit. Lett. 2020, 138, 638–643. [Google Scholar] [CrossRef]
- Mukherjee, H.; Ghosh, S.; Dhar, A.; Obaidullah, S.M.; Santosh, K.C.; Roy, K. Deep neural network to detect COVID-19: One architecture for both CT Scans and Chest X-rays. Appl. Intell. 2021, 51, 2777–2789. [Google Scholar] [CrossRef] [PubMed]
- Otoom, M.; Otoum, N.; Alzubaidi, M.A.; Etoom, Y.; Banihani, R. An IoT-based framework for early identification and monitoring of COVID-19 cases. Biomed. Signal Process. Control 2020, 62, 102149. [Google Scholar] [CrossRef] [PubMed]
- Khanday, A.M.U.D.; Rabani, S.T.; Khan, Q.R.; Rouf, N.; Din, M.M.U. Machine learning based approaches for detecting COVID-19 using clinical text data. Int. J. Inf. Technol. 2020, 12, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Khaloufi, H.; Abouelmehdi, K.; Beni-Hssane, A.; Rustam, F.; Jurcut, A.D.; Lee, E.; Ashraf, I. Deep Learning Based Early Detection Framework for Preliminary Diagnosis of COVID-19 via Onboard Smartphone Sensors. Sensors 2021, 21, 6853. [Google Scholar] [CrossRef]
- Canas, L.S.; Sudre, C.H.; Pujol, J.C.; Polidori, L.; Murray, B.; Molteni, E.; Graham, M.S.; Klaser, K.; Antonelli, M.; Berry, S.; et al. Early detection of COVID-19 in the UK using self-reported symptoms: A large-scale, prospective, epidemiological surveillance study. Lancet Digit. Health 2021, 3, e587–e598. [Google Scholar] [CrossRef]
- Salam, M.A.; Taha, S.; Ramadan, M. COVID-19 detection using federated machine learning. PLoS ONE 2021, 16, e0252573. [Google Scholar]
- McMahan, B.; Ramage, D. Research Scientists. Federated Learning: Collaborative Machine Learning without Centralized Training Data. 2018. Available online: https://ai.googleblog.com/2017/04/federated-learning-collaborative.html (accessed on 12 June 2021).
- Yang, W.; Zhang, Y.; Ye, K.; Li, L.; Xu, C.-Z. Ffd: A federated learning based method for credit card fraud detection. In Proceedings of the International Conference on Big Data, Silchar, India, 9–12 December 2019; pp. 18–32. [Google Scholar]
- Sarma, K.V.; Harmon, S.; Sanford, T.; Roth, H.R.; Xu, Z.; Tetreault, J.; Xu, D.; Flores, M.G.; Raman, A.G.; Kulkarni, R.; et al. Federated learning improves site performance in multicenter deep learning without data sharing. J. Am. Med. Inform. Assoc. 2021, 28, 1259–1264. [Google Scholar] [CrossRef]
- Roth, H.R.; Chang, K.; Singh, P.; Neumark, N.; Li, W.; Gupta, V.; Gupta, S.; Qu, L.; Ihsani, A.; Bizzo, B.C.; et al. Federated learning for breast density classification: A real-world implementation. In Proceedings of the Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning, Lima, Peru, 4–8 October 2020; pp. 181–191. [Google Scholar]
- Dwork, C. A firm foundation for private data analysis. Commun. ACM 2011, 54, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Dwork, C.; McSherry, F.; Nissim, K.; Smith, A. Calibrating noise to sensitivity in private data analysis. In Proceedings of the Theory of Cryptography Conference, New York, NY, USA, 4–7 March 2006; pp. 265–284. [Google Scholar]
- Dwork, C.; Roth, A. The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 2014, 9, 211–407. [Google Scholar] [CrossRef]
- Song, S.; Chaudhuri, K.; Sarwate, A.D. Stochastic gradient descent with differentially private updates. In Proceedings of the 2013 IEEE Global Conference on Signal and Information Processing, Austin, TX, USA, 3–5 December 2013; pp. 245–248. [Google Scholar]
- Bassily, R.; Smith, A.; Thakurta, A. Private empirical risk minimization: Efficient algorithms and tight error bounds. In Proceedings of the 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, Washington, DC, USA, 18–21 October 2014; pp. 464–473. [Google Scholar]
- Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H.B.; Mironov, I.; Talwar, K.; Zhang, L. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 308–318. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1273–1282. [Google Scholar]
- Xu, X.; Jiang, X.; Ma, C.; Du, P.; Li, X.; Lv, S.; Yu, L.; Ni, Q.; Chen, Y.; Su, J.; et al. A deep learning system to screen novel coronavirus disease 2019 pneumonia. Engineering 2020, 6, 1122–1129. [Google Scholar] [CrossRef] [PubMed]
- Narin, A.; Kaya, C.; Pamuk, Z. Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. Pattern Anal. Appl. 2021, 24, 1207–1220. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Abdelsamea, M.M.; Gaber, M.M. Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. Appl. Intell. 2021, 51, 854–864. [Google Scholar] [CrossRef]
- Rajpal, S.; Lakhyani, N.; Singh, A.K.; Kohli, R.; Kumar, N. Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images. Chaos Solitons Fractals 2021, 145, 110749. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [Green Version]
- Sivic, J.; Zisserman, A. Video Google: A text retrieval approach to object matching in videos. Proc. Comput. Vis. IEEE Int. Conf. 2003, 3, 1470. [Google Scholar]
- Zhang, X.; Wang, W.; Zhao, Y.; Xie, H. An improved YOLOv3 model based on skipping connections and spatial pyramid pooling. Syst. Sci. Control. Eng. 2021, 9 (Suppl. 1), 142–149. [Google Scholar] [CrossRef]
- Tan, Y.S.; Lim, K.M.; Tee, C.; Lee, C.P.; Low, C.Y. Convolutional neural network with spatial pyramid pooling for hand gesture recognition. Neural Comput. Appl. 2021, 33, 5339–5351. [Google Scholar] [CrossRef]
- Msonda, P.; Uymaz, S.A.; Karaağaç, S.S. Spatial Pyramid Pooling in Deep Convolutional Networks for Automatic Tuberculosis Diagnosis. Traitement Signal 2020, 37, 6. [Google Scholar] [CrossRef]
- Ouyang, X.; Gu, K.; Zhou, P. Spatial pyramid pooling mechanism in 3D convolutional network for sentence-level classification. IEEE/ACM Trans. Audio Speech Lang. Process. 2018, 26, 2167–2179. [Google Scholar] [CrossRef]
- Zhu, R.; Mao, X.-J.; Zhu, Q.-H.; Li, N.; Yang, Y.-B. Text detection based on convolutional neural networks with spatial pyramid pooling. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 1032–1036. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Hua, K.-L.; Ho, T.-T.; Jangtjik, K.-A.; Chen, Y.-J.; Yeh, M.-C. Artist-based painting classification using Markov random fields with convolution neural network. Multimed. Tools Appl. 2020, 79, 12635–12658. [Google Scholar] [CrossRef]
- Ho, T.-T.; Virtusio, J.J.; Chen, Y.-Y.; Hsu, C.-M.; Hua, K.-L. Sketch-guided deep portrait generation. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2020, 16, 1–18. [Google Scholar] [CrossRef]
- Zhang, Z.; Peng, H. Deeper and wider siamese networks for real-time visual tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4586–4595. [Google Scholar]
- Ben Fredj, H.; Bouguezzi, S.; Souani, C. Face recognition in unconstrained environment with CNN. Vis. Comput. 2021, 37, 217–226. [Google Scholar] [CrossRef]
- Ho, T.-T.; Huang, Y. Stock Price Movement Prediction Using Sentiment Analysis and CandleStick Chart Representation. Sensors 2021, 21, 7957. [Google Scholar] [CrossRef]
- Lella, K.K.; Pja, A. Automatic COVID-19 disease diagnosis using 1D convolutional neural network and augmentation with human respiratory sound based on parameters: Cough, breath, and voice. AIMS Public Health 2021, 8, 240. [Google Scholar] [CrossRef]
- Wang, S.-C. Artificial neural network. In Interdisciplinary Computing in Java Programming; Springer: Boston, MA, USA, 2003; pp. 81–100. [Google Scholar]
- Wang, L.; Wang, Z.; Qu, H.; Liu, S. Optimal forecast combination based on neural networks for time series forecasting. Appl. Soft Comput. 2018, 66, 1–17. [Google Scholar] [CrossRef]
- Mahmood, M.R.; Abdulazeez, A.M.; Orman, Z. A new hand gesture recognition system using artificial neural network. In Proceedings of the 2nd International Scientific Conference, Zakho-Duhok, Iraq, 18 April 2017; pp. 1–14. [Google Scholar]
- Schabron, B.; Alashqar, Z.; Fuhrman, N.; Jibbe, K.; Desai, J. Artificial neural network to detect human hand gestures for a robotic arm control. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 1662–1665. [Google Scholar]
- Shawaqfah, M.; Almomani, F. Forecast of the Outbreak of COVID-19 Using Artificial Neural Network: Case Study Qatar, Spain, and Italy. Results Phys. 2021, 27, 104484. [Google Scholar] [CrossRef]
- Hamadneh, N.N.; Khan, W.A.; Ashraf, W.; Atawneh, S.H.; Khan, I.; Hamadneh, B.N. Artificial neural networks for prediction of COVID-19 in Saudi Arabia. Comput. Mater. Contin. 2021, 66, 2787–2796. [Google Scholar] [CrossRef]
- Hamadneh, N.N.; Tahir, M.; Khan, W.A. Using artificial neural network with prey predator algorithm for prediction of the COVID-19: The case of Brazil and Mexico. Mathematics 2021, 9, 180. [Google Scholar] [CrossRef]
- Graves, A. Long short-term memory. In Supervised Sequence Labelling with Recurrent Neural Networks; Springer: Berlin/Heidelberg, Germany, 2012; pp. 37–45. [Google Scholar]
- Yudistira, N. COVID-19 Growth Prediction using Multivariate Long Short Term Memory. IAENG Int. J. Comput. Sci. 2020, 47, 829–837. [Google Scholar]
- Nikparvar, B.; Rahman, M.; Hatami, F.; Thill, J.-C. Spatio-temporal prediction of the COVID-19 pandemic in US counties: Modeling with a deep LSTM neural network. Sci. Rep. 2021, 11, 21715. [Google Scholar] [CrossRef] [PubMed]
- Aldhyani, T.H.H.; Alkahtani, H. A Bidirectional Long Short-Term Memory Model Algorithm for Predicting COVID-19 in Gulf Countries. Life 2021, 11, 1118. [Google Scholar] [CrossRef]
- Ghany, K.K.A.; Zawbaa, H.M.; Sabri, H.M. COVID-19 prediction using LSTM algorithm: GCC case study. Inform. Med. Unlocked 2021, 23, 100566. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.L.; Khan, F.; Din, S.; Band, S.S.; Mosavi, A.; Ibeke, E. Recurrent neural network and reinforcement learning model for covid-19 prediction. Front. Public Health 2021, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- ArunKumar, K.E.; Kalaga, D.V.; Kumar, C.M.S.; Kawaji, M.; Brenza, T.M. Forecasting of COVID-19 using deep layer recurrent neural networks (rnns) with gated recurrent units (grus) and long short-term memory (lstm) cells. Chaos Solitons Fractals 2021, 146, 110861. [Google Scholar] [CrossRef]
- Chowdhury, M.E.H.; Rahman, T.; Khandakar, A.; Mazhar, R.; Kadir, M.A.; Mahbub, Z.B.; Islam, K.R.; Khan, M.S.; Iqbal, A.; Al Emadi, N.; et al. Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 2020, 8, 132665–132676. [Google Scholar] [CrossRef]
- Rahman, T.; Khandakar, A.; Qiblawey, Y.; Tahir, A.; Kiranyaz, S.; Kashem, S.B.A.; Islam, M.T.; Al Maadeed, S.; Zughaier, S.M.; Khan, M.S.; et al. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Comput. Biol. Med. 2021, 132, 104319. [Google Scholar] [CrossRef]
- Mittal, S.; Venugopal, V.K.; Agarwal, V.K.; Malhotra, M.; Chatha, J.S.; Kapur, S.; Gupta, A.; Batra, V.; Majumdar, P.; Malhotra, A.; et al. A Novel Abnormality Annotation Database for COVID-19 Affected Frontal Lung X-rays. medRxiv 2021. [Google Scholar] [CrossRef]
- Winther, H.B.; Laser, H.; Gerbel, S.; Maschke, S.K.; Hinrichs, J.B.; Vogel-Claussen, J.; Wacker, F.K.; Höper, M.M.; Meyer, B.C. COVID-19 Image Repository. 2020. Available online: https://figshare.com/articles/dataset/COVID-19_Image_Repository/12275009 (accessed on 12 June 2021).
- Società Italiana di Radiologia Medica e Interventistica. COVID-19: Casistica Radiologica Italiana. 2020. Available online: https://sirm.org/category/senza-categoria/COVID-19/ (accessed on 12 June 2021).
- eurorad.org. COVID-19: Eurorad.org. Available online: https://eurorad.org (accessed on 12 June 2021).
- Cohen, J.P.; Morrison, P.; Dao, L. COVID-19 Image Data Collection. 2020. Available online: https://github.com/ieee8023/covid-chestxray-dataset (accessed on 12 June 2021).
- Haghanifar, A.; Majdabadi, M.M.; Ko, S. COVID-CXNet: Detecting COVID-19 in Frontal Chest X-ray Images Using Deep Learning. 2020. Available online: https://github.com/armiro/COVID-CXNet (accessed on 12 June 2021).
- Radiological Society of North America. RSNA Pneumonia Detection Challenge. 2018. Available online: https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data (accessed on 12 June 2021).
- Mooney, P. Chest X-Ray Images (Pneumonia). 2017. Available online: https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia (accessed on 12 June 2021).
- Hari, H. Symptoms and COVID Presence. 2020. Available online: https://www.kaggle.com/hemanthhari/symptoms-and-covid-presence (accessed on 12 December 2021).
Author | Title | Data | Approach | Limitations |
---|---|---|---|---|
Horry et al. [14] (2020) | COVID-19 detection through transfer learning using multimodal imaging data | X-ray, ultrasound, CT scan | VGG19 | Sharing sensitive data of patients |
Afshar et al. [26] (2020) | Covid-caps: A capsule network-based framework for identification of COVID-19 cases from X-ray images | Chest X-ray | COVID-CAPS | Sharing sensitive data of patients |
Mukherjee et al. [27] (2021) | Deep neural network to detect COVID-19: one architecture for both CT Scans and Chest X-rays | Chest X-ray, CXR images | CNN tailored Deep Neural Network | Sharing sensitive data of patients |
Otoom et al. [28] (2020) | An IoT-based framework for early identification and monitoring of COVID-19 cases | COVID-19 symptom | Eight algorithms (SVM, neural network, Naïve Bayes, KNN, decision table, decision stump, OneR, ZeroR) | Sharing sensitive data of patients |
Akib et al. [29] (2020) | Machine learning based approaches for detecting COVID-19 using clinical text data | COVID-19 symptom | Logistic regression, multinomial Naïve Bayes | Sharing sensitive data of patients |
Khaloufi et al. [30] (2021) | Deep Learning Based Early Detection Framework for Preliminary Diagnosis of COVID-19 via Onboard Smartphone Sensors | COVID-19 symptom | ANN, AI-enabled framework to diagnose COVID-19 using a smartphone | Sharing sensitive data of patients |
Menni et al. [9] (2020) | Real-time tracking of self-reported symptoms to predict potential COVID-19 | COVID-19 symptom | Smartphone-based app, logistic regressions | Sharing sensitive data of patients |
Canas et al. [31] (2021) | Early detection of COVID-19 in the UK using self-reported symptoms: a large-scale, prospective, epidemiological surveillance study | Chest X-ray images | MobileNetv2, ResNet18, ResNeXt, COVID-Net | Sensitive data can still be revealed through model updates |
Zhang et al. [15] (2021) | Dynamic fusion-based federated learning for COVID-19 detection | Chest X-ray images, CT scan | GhostNet, ResNet50, ResNet101 | Sensitive data can still be revealed through model updates |
Abdul et al. [32] (2021) | COVID-19 detection using federated machine learning | Chest X-ray, descriptive dataset | Federated with SGD optimizer | Sensitive data can still be revealed through model updates |
Model | No. Layers | No. Parameters (Milion) |
---|---|---|
5 × 5 CNN | 3 | 22 |
ResNet18 | 18 | 11.2 |
ResNet50 | 50 | 23.5 |
3 × 3 CNN | 3 | 1.6 |
3 × 3 CNN-SPP | 4 | 0.2 |
Model | No. Layers | No. Parameters (Thousand) |
---|---|---|
1DCNN | 5 | 37.4 |
ANN | 4 | 26.3 |
LSTM | 5 | 90.2 |
Covid | Normal | Viral Pneumonia | Total Images | |
---|---|---|---|---|
Training | 3416 images | 9992 images | 1145 images | 14,553 images |
Testing | 200 images | 200 images | 200 images | 600 images |
Covid | Non-Covid | Total | |
---|---|---|---|
Training | 3949 images | 941 images | 4890 images |
Testing | 434 images | 110 images | 544 images |
Round | IID | Non-IID(1) | Non-IID(2) |
---|---|---|---|
400 | 94.50% | 40.56% | 70.38% |
600 | 94.72% | 39.40% | 73.45% |
800 | 95.17% | 45.46% | 78.62% |
1000 | 95.32% | 44.68% | 80.93% |
Round | IID | Non-IID(1) |
---|---|---|
400 | 95.88% | 94.24% |
600 | 96.68% | 94.39% |
800 | 96.67% | 95.03% |
1000 | 96.65% | 95.37% |
Round | 3 Clients | 30 Clients | 300 Clients |
---|---|---|---|
400 | 40.56% | 64.57% | 73.36% |
600 | 39.40% | 65.93% | 73.37% |
800 | 45.46% | 66.52% | 74.89% |
1000 | 44.68% | 65.93% | 75.42% |
Round | Baseline | Non-IID (300 Clients) | Refined Non-IID |
---|---|---|---|
400 | 40.56% | 73.36% | 77.30% |
600 | 39.40% | 73.37% | 78.07% |
800 | 45.46% | 74.89% | 78.59% |
1000 | 44.68% | 75.42% | 79.56% |
Round | IID | Non-IID(1) | Refined Non-IID(1) |
---|---|---|---|
400 | 95.88% | 94.24% | 95.06% |
600 | 96.68% | 94.39% | 95.17% |
800 | 96.67% | 95.03% | 95.52% |
1000 | 96.65% | 95.37% | 95.68% |
q | Noise | Accuracy | |
---|---|---|---|
1/3 | 0.1 | 86.58% | 9.7 × |
10/30 | 0.3 | 75.36% | 8.9 × |
30/90 | 0.7 | 68.35% | 5.6 × |
60/180 | 1.3 | 70.21% | 97.39 |
90/270 | 1.9 | 69.27% | 46.36 |
100/300 | 2.1 | 68.70% | 39.40 |
q | Noise | Accuracy | |
---|---|---|---|
1/4 | 1.0 | 93.56% | 1.6 × |
10/40 | 2.0 | 93.99% | 2.9 × |
15/60 | 3.0 | 93.39% | 1.2 × |
20/80 | 4.0 | 91.33% | 73.56 |
25/100 | 5.0 | 88.73% | 49.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, T.-T.; Tran, K.-D.; Huang, Y. FedSGDCOVID: Federated SGD COVID-19 Detection under Local Differential Privacy Using Chest X-ray Images and Symptom Information. Sensors 2022, 22, 3728. https://doi.org/10.3390/s22103728
Ho T-T, Tran K-D, Huang Y. FedSGDCOVID: Federated SGD COVID-19 Detection under Local Differential Privacy Using Chest X-ray Images and Symptom Information. Sensors. 2022; 22(10):3728. https://doi.org/10.3390/s22103728
Chicago/Turabian StyleHo, Trang-Thi, Khoa-Dang Tran, and Yennun Huang. 2022. "FedSGDCOVID: Federated SGD COVID-19 Detection under Local Differential Privacy Using Chest X-ray Images and Symptom Information" Sensors 22, no. 10: 3728. https://doi.org/10.3390/s22103728
APA StyleHo, T. -T., Tran, K. -D., & Huang, Y. (2022). FedSGDCOVID: Federated SGD COVID-19 Detection under Local Differential Privacy Using Chest X-ray Images and Symptom Information. Sensors, 22(10), 3728. https://doi.org/10.3390/s22103728