Agnostic Envelope Linearization of Dynamically Supplied Power Amplifiers for Mobile Terminals
Abstract
:1. Introduction
2. Envelope Tracking PA Linearization
2.1. Supply Envelope Generation and ET PA Nonlinear Behavior
2.2. Optimized Envelope Generation for ET PA Linearization
2.3. Supply-Envelope-Dependent ET PA Modeling
2.4. EGMP Coefficients Extraction Process
Algorithm 1 Adaptation procedure for EGMP |
|
3. Experimental Setup and Linearization Results
3.1. Experimental Setup
3.2. Experimental Results with the NR-60 MHz Test Signal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wood, J. Behavioral Modeling and Linearization of RF Power Amplifiers; Artech House Publishers: Norwood, MA, USA, 2014. [Google Scholar]
- Wang, T.; Li, W.; Quaglia, R.; Gilabert, P.L. Machine-Learning Assisted Optimisation of Free-Parameters of a Dual-Input Power Amplifier for Wideband Applications. Sensors 2021, 21, 2831. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.; Zhu, A. Digital Predistortion Using Extended Magnitude-Selective Affine Functions for 5G Handset Power Amplifiers With Load Mismatch. IEEE Trans. Microw. Theory Tech. 2022, 70, 2825–2834. [Google Scholar] [CrossRef]
- Retz, J.; Chiron, J.F.; Khlat, N. Envelope Tracking for 5G Mobile Handsets. In Proceedings of the 2019 IEEE MTT-S International Microwave Conference on Hardware and Systems for 5G and Beyond (IMC-5G), Atlanta, GA, USA, 15–16 August 2019. [Google Scholar] [CrossRef]
- Gilabert, P.L.; Montoro, G.; Ruiz, N.; Garcia, J.A. Adaptive Envelope Shaping for Low and Medium Power Amplifiers with Dynamic Supply. IEEE Microw. Wireless Compon. Lett. 2016, 26, 513–515. [Google Scholar] [CrossRef] [Green Version]
- Qi, T.; He, S. Power Up Potential Power Amplifier Technologies for 5 G Applications. IEEE Microw. Mag. 2019, 20, 89–101. [Google Scholar] [CrossRef]
- Doherty, W.H. A New High Efficiency Power Amplifier for Modulated Waves. Radio Eng. 1936, 24, 1163–1182. [Google Scholar] [CrossRef]
- Shepphard, D.J.; Powell, J.; Cripps, S.C. An Efficient Broadband Reconfigurable Power Amplifier Using Active Load Modulation. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 443–445. [Google Scholar] [CrossRef]
- Popovic, Z.; García, J.A. Microwave Class-E Power Amplifiers: A Brief Review of Essential Concepts in High-Frequency Class-E PAs and Related Circuits. IEEE Microw. Mag. 2018, 19, 54–66. [Google Scholar] [CrossRef]
- Asbeck, P.; Popovic, Z. ET Comes of Age: Envelope Tracking for Higher-Efficiency Power Amplifiers. IEEE Microw. Mag. 2016, 17, 16–25. [Google Scholar] [CrossRef]
- Popovic, Z. Amping Up the PA for 5 G: Efficient GaN Power Amplifiers with Dynamic Supplies. IEEE Microw. Mag. 2017, 18, 137–149. [Google Scholar] [CrossRef]
- Watkins, G.T.; Mimis, K. How Not to Rely on Moore’s Law Alone: Low-Complexity Envelope-Tracking Amplifiers. IEEE Microw. Mag. 2018, 19, 84–94. [Google Scholar] [CrossRef]
- Wang, F.; Kimball, D.F.; Lie, D.Y.; Asbeck, P.M.; Larson, L.E. A Monolithic High-Efficiency 2.4-GHz 20-dBm SiGe BiCMOS Envelope-Tracking OFDM Power Amplifier. IEEE J. Solid State Circuits 2007, 42, 1271–1281. [Google Scholar] [CrossRef]
- Hassan, M.; Larson, L.E.; Leung, V.W.; Asbeck, P.M. A Combined Series-Parallel Hybrid Envelope Amplifier for Envelope Tracking Mobile Terminal RF Power Amplifier Applications. IEEE J. Solid State Circuits 2012, 47, 1185–1198. [Google Scholar] [CrossRef]
- Kwak, M.; Kimball, D.F.; Presti, C.D.; Scuderi, A.; Santagati, C.; Yan, J.J.; Asbeck, P.M.; Larson, L.E. Design of a Wideband High-Voltage High-Efficiency BiCMOS Envelope Amplifier for Micro-Base-Station RF Power Amplifiers. IEEE Trans. Microw. Theory Tech. 2012, 60, 1850–1861. [Google Scholar] [CrossRef]
- Wang, Z. Envelope Tracking Power Amplifiers for Wireless Communications; Artech House, Inc.: Norwood, MA, USA, 2014. [Google Scholar]
- Jeong, J.; Kimball, D.; Kwak, M.; Hsia, C.; Draxler, P.; Asbeck, P. Wideband Envelope Tracking Power Amplifiers With Reduced Bandwidth Power Supply Waveforms and Adaptive Digital Predistortion Techniques. IEEE Trans. Microw. Theory Tech. 2009, 57, 3307–3314. [Google Scholar] [CrossRef]
- Montoro, G.; Gilabert, P.; Bertran, E.; Berenguer, J. A method for real-time generation of slew-rate limited envelopes in envelope tracking transmitters. In Proceedings of the RF Front-Ends for Software Defined and Cognitive Radio Solutions (IMWS), 2010 IEEE International Microwave Workshop Series on RF Front-ends for Software Defined and Cognitive Radio Solutions, Aveiro, Portugal, 22–23 February 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Li, W.; Montoro, G.; Gilabert, P.L. RF Leakage Compensation in Wideband Envelope Tracking Power Amplifiers for Mobile Terminals. In Proceedings of the 2022 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), Las Vegas, NV, USA, 16–19 January 2022; pp. 32–35. [Google Scholar] [CrossRef]
- Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep reinforcement learning. arXiv 2015, arXiv:1509.02971. [Google Scholar]
- Wimpenny, G. Pre-Distorsion in RF Path in Combination with Shaping Table in Envelope Path for Envelope Tracking Amplifier. U.S. Patent 10,148,229, 4 December 2018. [Google Scholar]
- Cidronali, A.; Giovannelli, N.; Vlasits, T.; Hernaman, R.; Manes, G. A 240W dual-band 870 and 2140 MHz Envelope Tracking GaN PA designed by a probability distribution conscious approach. In Proceedings of the Microwave Symposium Digest (MTT), 2011 IEEE MTT-S International, Baltimore, MD, USA, 5–10 June 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Barry, A.; Li, W.; Becerra, J.A.; Gilabert, P.L. Comparison of Feature Selection Techniques for Power Amplifier Behavioral Modeling and Digital Predistortion Linearization. Sensors 2021, 21, 5772. [Google Scholar] [CrossRef] [PubMed]
Linearization | # | NMSE | ACPR | Power | Eff. |
---|---|---|---|---|---|
Approach | Coeffs. | (dB) | (dBc) | (dBm) | (%) |
w/o DPD | N/A | −24.39 | −28.57 | 27.21 | 16.58 |
GMP | 128 | −28.39 | −34.79 | 27.17 | 16.44 |
ELC | 84 | −30.04 | −36.73 | 27.26 | 17.06 |
EOPT | 84 | −29.27 | −36.93 | 27.26 | 16.76 |
ELC+GMP | 84 + 64 | −33.07 | −40.32 | 27.23 | 16.36 |
EOPT+GMP | 84 + 64 | −32.06 | −38.36 | 27.34 | 16.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Montoro, G.; Gilabert, P.L. Agnostic Envelope Linearization of Dynamically Supplied Power Amplifiers for Mobile Terminals. Sensors 2022, 22, 3773. https://doi.org/10.3390/s22103773
Li W, Montoro G, Gilabert PL. Agnostic Envelope Linearization of Dynamically Supplied Power Amplifiers for Mobile Terminals. Sensors. 2022; 22(10):3773. https://doi.org/10.3390/s22103773
Chicago/Turabian StyleLi, Wantao, Gabriel Montoro, and Pere L. Gilabert. 2022. "Agnostic Envelope Linearization of Dynamically Supplied Power Amplifiers for Mobile Terminals" Sensors 22, no. 10: 3773. https://doi.org/10.3390/s22103773
APA StyleLi, W., Montoro, G., & Gilabert, P. L. (2022). Agnostic Envelope Linearization of Dynamically Supplied Power Amplifiers for Mobile Terminals. Sensors, 22(10), 3773. https://doi.org/10.3390/s22103773