Instantaneous Best Integer Equivariant Position Estimation Using Google Pixel 4 Smartphones for Single- and Dual-Frequency, Multi-GNSS Short-Baseline RTK
Abstract
:1. Introduction
2. Instantaneous, Single- and Dual-Frequency, Multi-GNSS RTK Using the Float, Integer Least Squares, and Best Integer Equivariant Estimators
2.1. Functional Model
2.2. Float Estimation
2.3. Integer Least-Squares Estimation
2.4. Best Integer Equivariant Estimation
3. Google Pixel 4 Smartphone GNSS Data Collection
3.1. Setup Configuration with External and Internal Smartphone Antennas
3.2. Stochastic Model Settings
4. Instantaneous, Short-Baseline, Single- and Dual-Frequency RTK and BIE Positioning with Google Pixel 4 Smartphones
4.1. BIE with External Antennas for Single-Frequency RTK
4.2. BIE with Internal Antennas for Dual-Frequency RTK
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teunissen, P.J.G. Theory of integer equivariant estimation with application to GNSS. J. Geod. 2003, 77, 402–410. [Google Scholar] [CrossRef] [Green Version]
- Pesyna, K.M.; Heath, R.W.; Humphreys, T.E. Centimeter positioning with a smartphone-quality GNSS antenna. In Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2014), Tampa, FL, USA, 8–12 September 2014; pp. 1568–1577. [Google Scholar]
- Humphreys, T.E.; Murrian, M.; Van Diggelen, F.; Podshivalov, S.; Pesyna, K.M. On the feasibility of cm-accurate positioning via a smartphone’s antenna and GNSS chip. In Proceedings of the 2016 IEEE/ION Position, Location and Navigation Symposium, Savannah, GA, USA, 11–16 April 2016; pp. 232–242. [Google Scholar]
- Håkansson, M. Characterization of GNSS observations from a Nexus 9 Android tablet. GPS Solut. 2019, 23, 21. [Google Scholar] [CrossRef] [Green Version]
- Tomaštík, J.; Chudá, J.; Tunák, D.; Chudý, F.; Kardoš, M. Advances in smartphone positioning in forests: Dual-frequency receivers and raw GNSS data. For. Int. J. For. Res. 2021, 94, 292–310. [Google Scholar] [CrossRef]
- Aggrey, J.; Bisnath, S.; Naciri, N.; Shinghal, G.; Yang, S. Multi-GNSS precise point positioning with next-generation smartphone measurements. J. Spat. Sci. 2019, 65, 79–98. [Google Scholar] [CrossRef]
- Zhang, X.; Tao, X.; Zhu, F.; Shi, X.; Wang, F. Quality assessment of GNSS observations from an Android N smartphone and positioning performance analysis using time-differenced filtering approach. GPS Solut. 2018, 22, 70. [Google Scholar] [CrossRef]
- Guo, L.; Wang, F.; Sang, J.; Lin, X.; Gong, X.; Zhang, W. Characteristics Analysis of Raw Multi-GNSS Measurement from Xiaomi Mi 8 and Positioning Performance Improvement with L5/E5 Frequency in an Urban Environment. Remote Sens. 2020, 12, 744. [Google Scholar] [CrossRef] [Green Version]
- Darugna, F.; Wübbena, J.; Ito, A.; Wübbena, T.; Wübbena, G.; Schmitz, M. RTK and PPP-RTK Using Smartphones: From Short-Baseline to Long-Baseline Applications. In Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019), Miami, FL, USA, 16–20 September 2019; pp. 3932–3945. [Google Scholar]
- Laurichesse, D.; Rouch, C.; Marmet, F.X.; Pascaud, M. Smartphone applications for precise point positioning. In Proceedings of the 30th International Technical Meeting of the Satellite Division of The Institute of Navigation, Portland, OR, USA, 25–29 September 2017; pp. 171–187. [Google Scholar]
- Warnant, R.; Vyvere, D.; Van, L.; Warnant, Q. Positioning with single and dual frequency smartphones running Android 7 or later. In Proceedings of the 31st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2018), Miami, FL, USA, 24–28 September 2018; pp. 284–303. [Google Scholar]
- Paziewski, J.; Fortunato, M.; Mazzoni, A.; Odolinski, R. An analysis of multi-GNSS observations tracked by recent Android smartphones and smartphone-only relative positioning results. Measurement 2021, 175, 109162. [Google Scholar] [CrossRef]
- Verhagen, S.; Teunissen, P.J.G. Performance comparison of the BIE estimator with the float and fixed GNSS ambiguity estimators. In A Window Future Geod; Springer: Berlin, Heidelberg, 2005; pp. 428–433. [Google Scholar]
- Wen, Z.; Henkel, P.; Brack, A.; Günther, C. Best integer equivariant estimation for precise point positioning. In Proceedings of the ELMAR-2012, Zadar, Croatia, 12–14 September 2012; pp. 279–282. [Google Scholar]
- Brack, A.; Henkel, P.; Günther, C. Sequential best integer-equivariant estimation for GNSS. Navigation 2014, 61, 149–158. [Google Scholar] [CrossRef]
- Brack, A. Partial Carrier-Phase Integer Ambiguity Resolution for High Accuracy GNSS Positioning. Ph.D. Thesis, Lehrstuhl fur Kommunikation und Navigation, Technische Universitat Munchen, München, Germany, 2019. [Google Scholar]
- Teunissen, P.J.G. Best integer equivariant estimation for elliptically contoured distributions. J. Geod. 2020, 94, 82. [Google Scholar] [CrossRef]
- Odolinski, R.; Teunissen, P.J.G. Best integer equivariant estimation: Performance analysis using real data collected by low-cost, single- and dual-frequency, multi-GNSS receivers for short- to long-baseline RTK positioning. J. Geod. 2020, 94, 91. [Google Scholar] [CrossRef]
- Odolinski, R.; Teunissen, P.J.G. Best integer equivariant position estimation for multi-GNSS RTK: A multivariate normal and t-distributed performance comparison. J. Geod. 2022, 96, 3. [Google Scholar] [CrossRef]
- Paziewski, J.; Sieradzki, R.; Baryla, R. Signal characterization and assessment of code GNSS positioning with low-power consumption smartphones. GPS Solut. 2019, 23, 98. [Google Scholar] [CrossRef] [Green Version]
- Purfürst, T. Evaluation of Static Autonomous GNSS Positioning Accuracy Using Single-, Dual-, and Tri-Frequency Smartphones in Forest Canopy Environments. Sensors 2022, 22, 1289. [Google Scholar] [CrossRef] [PubMed]
- Yong, C.Z.; Odolinski, R.; Zaminpardaz, S.; Moore, M.; Rubinov, E.; Er, J.; Denham, M. Instantaneous, Dual-Frequency, Multi-GNSS Precise RTK Positioning Using Google Pixel 4 and Samsung Galaxy S20 Smartphones for Zero and Short Baselines. Sensors 2021, 21, 8318. [Google Scholar] [CrossRef] [PubMed]
- Paziewski, J. Recent advances and perspectives for positioning and applications with smartphone GNSS observations. Meas. Sci. Technol. 2020, 31, 091001. [Google Scholar] [CrossRef]
- Hesselbarth, A.; Wanninger, L. Towards centimeter accurate positioning with smartphones. In Proceedings of the 2020 European Navigation Conference (ENC), Dresden, Germany, 23–24 November 2020; pp. 1–8. [Google Scholar]
- Odijk, D.; Teunissen, P.J.G. Characterization of between-receiver GPS-Galileo inter-system biases and their effect on mixed ambiguity resolution. GPS Solut. 2013, 17, 521–533. [Google Scholar] [CrossRef]
- Odolinski, R.; Teunissen, P.J.G.; Odijk, D. Combined BDS, Galileo, QZSS and GPS single-frequency RTK. GPS Solut. 2015, 19, 151–163. [Google Scholar] [CrossRef]
- Takasu, T.; Yasuda, A. Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. In Proceedings of the International Symposium on GPS/GNSS, Jeju, Korea, 4 November 2009; pp. 1–6. [Google Scholar]
- Teunissen, P.J.G. The least-squares ambiguity decorrelation adjustment: A method for fast GPS integer ambiguity estimation. J. Geod. 1995, 70, 65–82. [Google Scholar] [CrossRef]
- Teunissen, P.J.G. On the computation of the best integer equivariant estimator. Artif. Satell. 2005, 40, 161–171. [Google Scholar]
- Odolinski, R.; Teunissen, P.J.G.; Odijk, D. First combined COMPASS/BeiDou-2 and GPS positioning results in Australia. Part II: Single- and multiple-frequency single-baseline RTK positioning. J. Spat. Sci. 2014, 59, 25–46. [Google Scholar] [CrossRef]
- Khodabandeh, A.; Zaminpardaz, S.; Nadarajah, N. A study on multi-GNSS phase-only positioning. Meas. Sci. Technol. 2021, 32, 095005. [Google Scholar] [CrossRef]
Antennas Used | Range of Phase STDs (m) | Range of Code STDs (m) | DoY (Hours of Day), hh:mm:ss UTC |
---|---|---|---|
External antenna | 0.001–0.002 | 1.198–1.413 | 228–2021 (8 h), 13:35:00–21:34:59 |
Internal antenna | 0.003–0.004 | 5.985–5.998 | 344 and 345–2020 (6 h), 21:03:00–02:57:59 |
Mode | ILS Success Rate (%) | Percentage of the 3D Position Errors (%) | STD (m) | Mean # of Satellites | Elevation Cut-Off Angle | |||||
---|---|---|---|---|---|---|---|---|---|---|
≤0.05 m | <1.0 m | <2.0 m | <4.0 m | E | N | U | ||||
ILS | 11.52 | 11.52 | 46.12 | 69.27 | 91.18 | 3.509 | 5.624 | 15.044 | 8.6 | |
BIE | 0.09 | 46.90 | 72.71 | 93.47 | 3.238 | 5.283 | 14.170 | 38 | ||
Float | 0.00 | 44.70 | 71.34 | 93.34 | 3.282 | 5.332 | 14.358 | |||
ILS | 54.92 | 54.92 | 72.79 | 85.08 | 96.16 | 2.661 | 2.642 | 8.990 | 10.6 | |
BIE | 5.49 | 70.92 | 88.25 | 97.89 | 2.344 | 2.217 | 7.797 | 35 | ||
Float | 0.00 | 55.65 | 82.10 | 97.55 | 2.791 | 2.605 | 9.455 | |||
ILS | 79.75 | 79.75 | 87.32 | 92.86 | 98.01 | 1.849 | 1.883 | 6.035 | 11.7 | |
BIE | 29.05 | 85.97 | 94.54 | 98.92 | 1.634 | 1.596 | 5.172 | 32 | ||
Float | 0.00 | 58.45 | 84.82 | 98.17 | 2.507 | 2.462 | 8.096 | |||
ILS | 94.29 | 94.29 | 96.38 | 97.85 | 99.35 | 1.126 | 1.024 | 3.073 | 13.5 | |
BIE | 67.81 | 95.86 | 98.27 | 99.56 | 1.014 | 0.887 | 2.667 | 30 | ||
Float | 0.00 | 60.59 | 86.41 | 98.64 | 2.370 | 2.258 | 7.147 | |||
ILS | 99.85 | 99.85 | 99.90 | 99.94 | 99.99 | 0.183 | 0.192 | 0.425 | 17.9 | |
BIE | 99.65 | 99.90 | 99.95 | 99.99 | 0.170 | 0.179 | 0.400 | 20 | ||
Float | 0.00 | 70.98 | 93.41 | 99.78 | 1.846 | 1.865 | 4.762 | |||
ILS | 99.92 | 99.92 | 99.97 | 99.98 | 99.99 | 0.095 | 0.147 | 0.444 | 23.6 | |
BIE | 99.91 | 99.97 | 99.98 | 99.99 | 0.093 | 0.143 | 0.440 | 10 | ||
Float | 0.00 | 78.03 | 96.81 | 99.98 | 1.556 | 1.633 | 3.411 |
Mode | ILS Success Rate (%) | Percentage of the 3D Position Errors (%) | STD (m) | Mean # of Satellites | Elevation Cut-Off Angle | |||||
---|---|---|---|---|---|---|---|---|---|---|
≤0.05 m | <1.0 m | <2.0 m | <4.0 m | E | N | U | ||||
ILS | 9.62 | 9.62 | 29.28 | 44.44 | 65.86 | 10.9938 | 12.0972 | 29.7068 | 7.79 | |
BIE | 0.52 | 27.66 | 45.26 | 67.95 | 10.6723 | 11.7231 | 28.5620 | 40 | ||
Float | 0.00 | 24.19 | 41.98 | 66.46 | 10.8387 | 11.8522 | 28.8412 | |||
ILS | 53.89 | 53.89 | 64.89 | 72.67 | 84.46 | 6.1821 | 6.1096 | 15.9402 | 11.87 | |
BIE | 24.98 | 60.47 | 72.50 | 86.15 | 5.8795 | 5.5962 | 14.8443 | 30 | ||
Float | 0.00 | 31.84 | 54.61 | 79.30 | 6.4436 | 6.4693 | 16.6158 | |||
ILS | 72.15 | 72.15 | 78.87 | 83.63 | 90.86 | 4.6011 | 4.9372 | 10.8364 | 13.74 | |
BIE | 46.22 | 73.89 | 82.53 | 91.38 | 4.3570 | 4.5332 | 9.9186 | 25 | ||
Float | 0.00 | 36.32 | 60.89 | 84.86 | 5.2655 | 5.7106 | 12.0913 | |||
ILS | 84.01 | 84.01 | 88.10 | 91.31 | 95.32 | 3.0321 | 3.0510 | 7.3630 | 15.49 | |
BIE | 65.93 | 86.18 | 90.95 | 95.72 | 2.8652 | 2.7173 | 6.8088 | 20 | ||
Float | 0.00 | 40.10 | 65.29 | 88.75 | 4.2646 | 4.5909 | 9.8794 | |||
ILS | 91.90 | 91.90 | 94.29 | 96.01 | 98.05 | 1.9998 | 2.0644 | 4.1177 | 17.56 | |
BIE | 80.03 | 93.52 | 95.99 | 98.29 | 1.8819 | 1.8900 | 3.7877 | 15 | ||
Float | 0.00 | 45.57 | 71.17 | 92.70 | 3.6434 | 4.0713 | 7.1847 | |||
ILS | 95.39 | 95.39 | 96.64 | 97.68 | 98.76 | 1.5967 | 1.3888 | 2.7278 | 19.81 | |
BIE | 88.37 | 96.35 | 97.75 | 99.07 | 1.4831 | 1.2386 | 2.4483 | 10 | ||
Float | 0.00 | 47.81 | 74.55 | 94.41 | 3.3856 | 3.6980 | 6.1203 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yong, C.Z.; Harima, K.; Rubinov, E.; McClusky, S.; Odolinski, R. Instantaneous Best Integer Equivariant Position Estimation Using Google Pixel 4 Smartphones for Single- and Dual-Frequency, Multi-GNSS Short-Baseline RTK. Sensors 2022, 22, 3772. https://doi.org/10.3390/s22103772
Yong CZ, Harima K, Rubinov E, McClusky S, Odolinski R. Instantaneous Best Integer Equivariant Position Estimation Using Google Pixel 4 Smartphones for Single- and Dual-Frequency, Multi-GNSS Short-Baseline RTK. Sensors. 2022; 22(10):3772. https://doi.org/10.3390/s22103772
Chicago/Turabian StyleYong, Chien Zheng, Ken Harima, Eldar Rubinov, Simon McClusky, and Robert Odolinski. 2022. "Instantaneous Best Integer Equivariant Position Estimation Using Google Pixel 4 Smartphones for Single- and Dual-Frequency, Multi-GNSS Short-Baseline RTK" Sensors 22, no. 10: 3772. https://doi.org/10.3390/s22103772
APA StyleYong, C. Z., Harima, K., Rubinov, E., McClusky, S., & Odolinski, R. (2022). Instantaneous Best Integer Equivariant Position Estimation Using Google Pixel 4 Smartphones for Single- and Dual-Frequency, Multi-GNSS Short-Baseline RTK. Sensors, 22(10), 3772. https://doi.org/10.3390/s22103772