Design and Optimization of GeSn Waveguide Photodetectors for 2-µm Band Silicon Photonics
Abstract
:1. Introduction
2. Design of GeSn WGPDs
2.1. Design of GeSn p–i–n Waveguide Photodetectors
2.2. PD to Waveguide Coupling
3. Theoretical Models
3.1. Absorption Coefficient
3.2. Saturation Velocity and Bandwidth
3.3. Optical Responsivity
3.4. Dark Current
3.5. R0A Product and Detectivity
4. Results and Discussions
4.1. Absorption Coefficient
4.2. Optical Confinement Factor
4.3. Carrier Saturation Velocity
4.4. Bandwidth
4.5. Optimization of the GeSn WGPD at 2 µm
4.6. Responsivity
4.7. Dark Current and R0A Parameter
4.8. Detectivity
4.9. Optimum Structures and Optimum Performances of the GeSn WGPDs
4.10. Comparative Study of Different GeSn PDs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ellis, A.D.; Zhao, J.; Cottar, D. Approaching the non–linear Shanon limit. J. Lightwave Technol. 2010, 28, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Roberts, P.J.; Couny, F.; Sabert, H.; Mangan, B.J.; Williams, D.P.; Farr, L.; Russell, P.S.J. Ultimate low loss of hollow–core photonic crystal fibers. Opt. Express 2005, 13, 236–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yablonovitch, E. Photonic band-gap structures. J. Opt. Soc. Am. B 1993, 10, 283–295. [Google Scholar] [CrossRef]
- Noda, S.; Chutinau, A.; Imada, M. Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature 2000, 407, 608–610. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Chen, M.; Xiao, S. Wide-angle polarization selectivity based on anomalous defect mode in photonic crystal containing hyperbolic metamaterials. Opt. Lett. 2022, 47, 2153–2156. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Heidt, A.M.; Simakov, N.; Jung, Y.; Daniel JM, O.; Alam, S.U.; Richardson, D.J. Diode–pumped wideband thulium–doped fiber amplifiers for optical communications in the 1800–2050 nm window. Opt. Express 2013, 21, 26450–26455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunning, F.; Corbett, B. Time to Open the 2–µm Window? Opt. Photonics News 2019, 30, 42–47. [Google Scholar] [CrossRef]
- Ullah, M.N.; Pratiwi, E.; Park, J.H.; Lee, K.; Choi, H.; Yeom, J.-Y. Wavelength discrimination (WLD) TOF–PET detector with DOI information. Phys. Med. Biol. 2020, 65, 055003. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Huang, J.; Deng, Z.; Cao, C.; Gong, Q.; Chen, B. Dynamic model and bandwidth characterization of InGaAs/GaAsSb type–II quantum wells PIN photodiodes. Opt. Express 2018, 26, 35034–35045. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, Z.; Huang, J.; Deng, Z.; Chen, B. High–speed uni–traveling carrier photodiode for 2 µm wavelength application. Optica 2019, 6, 884–889. [Google Scholar] [CrossRef]
- Soref, R. Silicon–based Silicon–germanium–tin Heterostructure Photonics. Philos. Trans. R. Soc. A 2014, 372, 20130113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deen, M.J.; Basu, P.K. Silicon Photonics: Fundamentals and Devices; Willey: Hoboken, NJ, USA, 2012. [Google Scholar]
- Michel, J.; Liu, J.; Kimerlin, L.C. High–performance Ge–on–Si Photodetectors. Nat. Photon. 2010, 4, 527–534. [Google Scholar] [CrossRef]
- Gupta, J.P.; Bhargava, N.; Kim, S.; Adam, T.; Kolodzey, J. Infrared Electroluminescence from GeSn Heterojunction Diodes Grown by Molecular Beam Epitaxy. Appl. Phys. Lett. 2013, 102, 251117. [Google Scholar] [CrossRef]
- Yu, I.S.; Wu, T.H.; Wu, K.Y.; Cheng, H.H.; Mashanov, V.; Nikiforov, A.; Pchelyakov, O.; Wu, X.S. Investigation of Ge1−xSnx/Ge with high Sn composition grown at low–temperature. AIP Adv. 2011, 1, 042118. [Google Scholar] [CrossRef] [Green Version]
- Aubin, J.; Hartmann, J.M.; Gassenq, A.; Rouviere, J.L.; Robin, E.; Delaye, V.; Cooper, D.; Mollard, N.; Reboud, V.; Calvo, V. Growth and structural properties of step-graded, high Sn content GeSn layers on Ge. Semicond. Sci. Technol. 2017, 32, 094006. [Google Scholar] [CrossRef]
- Chang, G.-E.; Yu, S.-Q.; Liu, J.; Cheng, H.H.; Soref, R.A.; Sun, G. Achievable performance of uncooled homojunction GeSn mid–infrared photodetectors. IEEE J. Sel. Quantum Electron. 2022, 28, 3800611. [Google Scholar] [CrossRef]
- Chang, G.-E.; Basu, R.; Mukhopadhyay, B.; Basu, P.K. Design and Modeling of GeSn–Based Heterojucntion Phototransistors for Communication Applications. IEEE J. Sel. Quantum Electron. 2016, 22, 8200409. [Google Scholar] [CrossRef]
- Mukhopadhyay, B.; Sen, G.; Basu, R.; Mukhopadhyay, S.; Basu, P.K. Prediction of Large Enhancement of Electron Mobility in Direct Gap Ge1–xSnx Alloy. Phys. Stat. Solidi B 2017, 254, 1700244. [Google Scholar] [CrossRef]
- Ghosh, S.; Mukhopadhyay, B.; Sen, G.; Basu, P.K. Study of Si–Ge–Sn based Heterobipolar Phototransistor (HPT) Exploiting Quantum Confined Stark Effect and Franz Keldysh Effect with and Without Resonant Cavity. Phys. E 2019, 106, 62–67. [Google Scholar] [CrossRef]
- Ghosh, S.; Mukhopadhyay, B.; Sen, G.; Basu, P.K. Analysis of Some Important Parameters of Si–Ge–Sn RCE–HPT Exploiting QCSE and FKE. In Proceedings of the URSI–RCRS, Varanasi, India, 12–14 February 2020. [Google Scholar]
- Ghosh, S. Comparative Study of Si–Ge–Sn Resonant Cavity Enhanced Heterojunction Bipolar Phototransistor under Quantum Confined Stark Effect and Franz Keldysh Effect at 1.55 µm. IOSR J. Elec. Comm. Eng. 2022, 17, 1–10. [Google Scholar]
- Hung, W.-T.; Barshilia, D.; Basu, R.; Cheng, H.H.; Chang, G.-E. Silicon–based High–responsivity GeSn Short–wave Infrared Heterojunction Phototransistors with a Floating Base. Opt. Lett. 2020, 45, 1088–1091. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Basu, R.; Chang, G.-E. Impact of Temperature and Doping on the Performance of Ge/Ge1−xSnx/Ge Heterojunction Phototransistors. IEEE Photonics J. 2020, 12, 6801814. [Google Scholar]
- Ghosh, S.; Mukhopadhyay, B.; Sen, G.; Basu, P.K. Performance analysis of GeSn/SiGeSn Quantum Well Infrared Photodetector in Terahertz Wavelength Region. Physica E 2020, 115, 113692. [Google Scholar] [CrossRef]
- Ghosh, S.; Bhattacharyya, A.; Sen, G.; Mukhopadhyay, B. Optimization of different structural parameters of GeSn/SiGeSn Quantum Well Infrared Photodetectors (QWIPs) for low dark current and high responsivity. J. Comp. Electron. 2021, 20, 1224–1233. [Google Scholar] [CrossRef]
- Tran, H.; Du, W.; Ghetmiri, S.A.; Mosleh, A.; Sun, G.; Soref, R.A.; Margetis, J.; Tolle, J.; Li, B.; Naseem, H.A.; et al. Systematic study of Ge1–xSnx absorption coefficient and refractive index for the device applications of Si–based optoelectronics. J. Appl. Phys. 2016, 119, 103106. [Google Scholar] [CrossRef]
- Ghosh, S.; Mukhopadhyay, B.; Chang, G.-E. Design and Analysis of GeSn–Based Resonant–Cavity–Enhanced Photodetectors for Optical Communication Applications. IEEE Sens. J. 2020, 20, 7801–7809. [Google Scholar] [CrossRef]
- Ghosh, S.; Kumar, H.; Mukhopadhyay, B.; Chang, G.-E. Design and modeling of high–performance DBR–based resonant–cavity–enhanced GeSn photodetector for fiber–optic telecommunication networks. IEEE Sens. J. 2021, 21, 9900–9908. [Google Scholar] [CrossRef]
- Oehme, M.; Schmid, M.; Kaschel, M.; Gollhofer, M.; Widmann, D.; Kasper, E.; Schulze, J. GeSn p–i–n detectors integrated on Si with up to 4% Sn. Appl. Phys. Lett. 2012, 101, 141110. [Google Scholar] [CrossRef]
- Tseng, H.H.; Li, H.; Mashanov, V.; Yang, Y.J.; Cheng, H.H.; Chang, G.-E.; Soref, R.A.; Sun, G. GeSn–based p–i–n Photodiodes with Strained Active Layer on a Si wafer. Appl. Phys. Lett. 2013, 103, 231907. [Google Scholar] [CrossRef]
- Su, S.; Cheng, B.; Xue, C.; Wang, W.; Cao, Q.; Xue, H.; Hu, W.; Zhang, G.; Zuo, Y.; Wang, Q. GeSn p–i–n photodetector for all telecommunication bands detection. Opt. Express 2011, 19, 6400. [Google Scholar] [CrossRef]
- Ghosh, S.; Lin, K.-C.; Tsai, C.-H.; Kumar, H.; Chen, Q.; Zhang, L.; Son, B.; Tan, C.S.; Kim, M.; Mukhopadhyay, B.; et al. Metal–Semiconductor–Metal GeSn Photodetectors on Silicon for Short–Wave Infrared Applications. Micromachines 2020, 11, 795. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.; Pham, T.; Du, W.; Zhang, Y.; Grant, P.; Grant, J.; Sun, G.; Soref, R.; Margetis, J.; Tolle, J.; et al. High performance Ge0.89Sn0.11 photodiodes for low–cost shortwave infrared imaging. J. Appl. Phys. 2018, 124, 013101. [Google Scholar] [CrossRef]
- Xu, S.; Huang, Y.C.; Lee, K.H.; Wang, W.; Dong, Y.; Lei, D.; Panah, S.; Tan, C.S.; Gong, X.; Yeo, Y.C. GeSn lateral p–i–n photodetector on insulating substrate. Opt. Express 2018, 26, 17312–17321. [Google Scholar] [CrossRef]
- Tran, H.; Pham, T.; Margetis, J.; Zhou, Y.; Dou, W.; Grant, P.C.; Grant, J.M.; Alkabi, S.; Du, W.; Sun, G.; et al. Study of high performance GeSn photodetectors with cutoff wavelength up to 3.7 µm for low–cost infrared imaging. In Proceedings of the CLEO: Science and Innovations 2019, San Jose, CA, USA, 5–10 May 2019. [Google Scholar]
- Peng, Y.-H.; Cheng, H.H.; Mashanov, V.I.; Chang, G.-E. GeSn p–i–n waveguide photodetectors on silicon substrates. Appl. Phys. Lett. 2014, 105, 231109. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Zhang, G.; Chen, Y.; Huang, Y.C.; Gong, X. High–speed and high–responsivity p–i–n waveguide photodetector at a 2 µm wavelength with a Ge0.92Sn0.08/Ge multiple–quantum–well active layer. Opt. Lett. 2021, 46, 2099–2102. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-H.; Chang, G.-E.; Li, H.; Cheng, H.H. Sn–based waveguide p–i–n photodetector with strained GeSn/Ge multiple–quantum–well active layer. Opt. Lett. 2017, 42, 1652. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-H.; Lin, K.-C.; Cheng, C.-Y.; Lee, K.-C.; Cheng, H.H.; Chang, G.-E. GeSn lateral p–i–n waveguide photodetectors for mid–infrared integrated photonics. Opt. Lett. 2021, 46, 864–867. [Google Scholar] [CrossRef]
- Chang, G.-E.; Chang, S.-W.; Chuang, S.L. Strain–Balanced GezSn1–z–SixGeySn1–x–y Multiple–Quantum–Well Lasers. IEEE J. Quantum Electron. 2010, 46, 1813–1820. [Google Scholar] [CrossRef]
- Chuang, S.L. Physics of Photonic Devices, 2nd ed.; Willey: Hoboken, NJ, USA, 2012. [Google Scholar]
- Pankove, J.I. Optical Processes in Semiconductors; Dover Publications: New York, NY, USA, 1971. [Google Scholar]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic: Orlando, FL, USA, 1985. [Google Scholar]
- Schaevitz, R.K.; Ly–Gagnon, D.S.; Roth, J.E.; Edwards, E.H.; Miller, D.A.B. Indirect absorption in germanium quantum wells. AIP Adv. 2011, 1, 032164. [Google Scholar] [CrossRef]
- Takata, I. A simple new model for the saturation velocity and the voltage dependency of leakage current. In Proceedings of the 9th International Symposium on Power Semiconductor Devices and IC’s, Weimar, Germany, 26–29 May 1997. [Google Scholar]
- Song, Z.; Fan, W.; Tan, C.S.; Wang, Q.; Nam, D.; Sun, G. Band structure of Ge1–xSnx alloy: A full–zone 30–band k·p model. New J. Phys. 2019, 21, 073037. [Google Scholar] [CrossRef]
- Gencarelli, F.; Vincent, B.; Demeulemeester, J.; Vantomme, A.; Moussa, A.; Franquet, A.; Kumar, A.; Bender, H.; Meersschaut, J.; Vandervorst, W.; et al. Crystalline properties and strain relaxation mechanism of CVD grown GeSn. ECS J. Solid State Sci. Technol. 2013, 2, P134–P137. [Google Scholar] [CrossRef]
- Fidaner, O.; Okyay, A.K.; Roth, J.E.; Schaevitz, R.K.; Kuo, Y.-H.; Saraswat, K.C.; Harris, J.S.; Miller, D.A.B. Ge–SiGe quantum–well waveguide photodetectors on silicon for the near–infrared. IEEE Photon. Technol. Lett. 2007, 19, 1631–1633. [Google Scholar] [CrossRef]
- Chen, H.; Verheyen, P.; De Heyn, P.; Lepage, G.; De Coster, J.; Balakrishnan, S.; Absil, P.; Roelkens, G.; Van Campenhout, J. Dark current analysis in high–speed germanium p–i–n waveguide photodetectors. J. Appl. Phys. 2016, 119, 213105. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Phan, Q.; Weng, B.; McDowell, L.L.; Qiu, J.; Cai, Z.; Shi, Z. Study on the theoretical limitation of the mid–infrared PbSe N+–P junction detectors at high operating temperature. Detection 2018, 6, 83997. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.C.; Huang, P.R.; Li, H.; Cheng, H.H.; Chang, G.-E. Temperature–dependent characteristics of GeSn/Ge multiple–quantum–well photoconductors on silicon. Opt. Lett. 2021, 46, 3604–3607. [Google Scholar] [CrossRef]
- Tsai, C.-H.; Huang, B.-J.; Soref, R.A.; Sun, G.; Cheng, H.H.; Chang, G.-E. GeSn resonant–cavity–enhanced photodetectors for efficient photodetection at the 2 µm wavelength band. Opt. Lett. 2020, 45, 1463–1466. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Bansal, R.; Lee, K.-C.; Sun, G.; Soref, R.; Cheng, H.H.; Chang, G.-E. Planar GeSn lateral p–i–n resonant–cavity–enhanced photodetectors for short–wave infrared integrated photonics. Opt. Lett. 2021, 46, 3316–3319. [Google Scholar] [CrossRef]
Sn Content x (%) | Optimum Length L0 (µm) | Optimum Performance | |||
---|---|---|---|---|---|
Responsivity Rλ (A/W) | Bandwidth f3dB (GHz) | Response Time τr (ps) | Detectivity D* (cmHz½W−1) | ||
6 | 70 | 1.275 | 77 | 4.54 | 1.78 × 1011 |
8 | 50 | 1.499 | 87 | 4.02 | 1.12 × 1011 |
10 | 32 | 1.549 | 97 | 3.60 | 6.29 × 1010 |
12 | 24 | 1.578 | 103 | 3.39 | 2.94 × 1010 |
14 | 19 | 1.594 | 110 | 3.18 | 1.15 × 1010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, S.; Bansal, R.; Sun, G.; Soref, R.A.; Cheng, H.-H.; Chang, G.-E. Design and Optimization of GeSn Waveguide Photodetectors for 2-µm Band Silicon Photonics. Sensors 2022, 22, 3978. https://doi.org/10.3390/s22113978
Ghosh S, Bansal R, Sun G, Soref RA, Cheng H-H, Chang G-E. Design and Optimization of GeSn Waveguide Photodetectors for 2-µm Band Silicon Photonics. Sensors. 2022; 22(11):3978. https://doi.org/10.3390/s22113978
Chicago/Turabian StyleGhosh, Soumava, Radhika Bansal, Greg Sun, Richard A. Soref, Hung-Hsiang Cheng, and Guo-En Chang. 2022. "Design and Optimization of GeSn Waveguide Photodetectors for 2-µm Band Silicon Photonics" Sensors 22, no. 11: 3978. https://doi.org/10.3390/s22113978
APA StyleGhosh, S., Bansal, R., Sun, G., Soref, R. A., Cheng, H. -H., & Chang, G. -E. (2022). Design and Optimization of GeSn Waveguide Photodetectors for 2-µm Band Silicon Photonics. Sensors, 22(11), 3978. https://doi.org/10.3390/s22113978