A High-Precision Mid-Infrared Spectrometer for Ambient HNO3 Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. QCLAS Setup
2.2. Experimental Setup for Laboratory Characterization
2.3. Field Deployment
2.3.1. Measurement Site and QCLAS Inlet Setup
2.3.2. Ancillary Measurements
3. Results and Discussion
3.1. Characteristics of the QCLAS
3.1.1. Limit of Detection and Response Time
3.1.2. Linearity and Accuracy
3.2. Field Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | analog-to-digital converter |
CAPS | cavity-attenuated phase shift spectrometer/spectroscopy |
CIMS | chemical ionization mass spectrometry |
CLD | chemiluminescence detector/detection |
CW | continuous wave |
DAC | digital-to-analog converter |
DAQ | data acquisition |
DFB-QCL | distributed feedback quantum cascade laser |
FPGA | field-programmable gate array |
FSR | free spectral range |
iCW | intermittent continuous wave |
LAS | laser absorption spectroscopy |
LOD | limit of detection |
MCT | mercury cadmium telluride |
MFC | mass flow controller |
mid-IR | mid-infrared |
Mo | molybdenum |
MPC | multipass cell |
OPL | optical path length |
PCB | printed circuit board |
PFA | perfluoroalkoxy alkane |
ppb | part per billion by volume |
ppt | part per trillion by volume |
PTFE | polytetrafluoroethylene |
QCLAS | quantum cascade laser absorption spectrometer/spectroscopy |
TEC | thermoelectric cooling |
VOCs | volatile organic compounds |
References
- Monks, P.S.; Archibald, A.T.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K.S.; Mills, G.E.; et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 2015, 15, 8889–8973. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, D.S.; Young, P.J.; Naik, V.; Lamarque, J.F.; Shindell, D.T.; Voulgarakis, A.; Skeie, R.B.; Dalsoren, S.B.; Myhre, G.; Berntsen, T.K.; et al. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 2013, 13, 3063–3085. [Google Scholar] [CrossRef] [Green Version]
- Padgett, P.E.; Bytnerowicz, A. Deposition and adsorption of the air pollutant HNO3 vapor to soil surfaces. Atmos. Environ. 2001, 35, 2405–2415. [Google Scholar] [CrossRef]
- Geddes, J.A.; Martin, R.V. Global deposition of total reactive nitrogen oxides from 1996 to 2014 constrained with satellite observations of NO2 columns. Atmos. Chem. Phys. 2017, 17, 10071–10091. [Google Scholar] [CrossRef] [Green Version]
- Schwede, D.B.; Simpson, D.; Tan, J.N.; Fu, J.S.; Dentener, F.; Du, E.Z.; deVries, W. Spatial variation of modelled total, dry and wet nitrogen deposition to forests at global scale. Environ. Pollut. 2018, 243, 1287–1301. [Google Scholar] [CrossRef] [PubMed]
- Fahey, D.W.; Hubler, G.; Parrish, D.D.; Williams, E.J.; Norton, R.B.; Ridley, B.A.; Singh, H.B.; Liu, S.C.; Fehsenfeld, F.C. Reactive nitrogen species in the troposphere–Measurements of NO, NO2, HNO3, particulate nitrate, peroxyacetyl nitrate (PAN), O3, and total reactive odd nitrogen (NOy) at Niwot Ridge, Colorado. J. Geophys. Res. Atmos. 1986, 91, 9781–9793. [Google Scholar] [CrossRef]
- Jaegle, L.; Steinberger, L.; Martin, R.V.; Chance, K. Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discuss. 2005, 130, 407–423. [Google Scholar] [CrossRef]
- Miyazaki, K.; Eskes, H.; Sudo, K.; Boersma, K.F.; Bowman, K.; Kanaya, Y. Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation. Atmos. Chem. Phys. 2017, 17, 807–837. [Google Scholar] [CrossRef] [Green Version]
- Day, D.A.; Wooldridge, P.J.; Cohen, R.C. Observations of the effects of temperature on atmospheric HNO3, ΣANs, ΣPNs, and NOx: Evidence for a temperature-dependent HOx source. Atmos. Chem. Phys. 2008, 8, 1867–1879. [Google Scholar] [CrossRef] [Green Version]
- Browne, E.C.; Min, K.E.; Wooldridge, P.J.; Apel, E.; Blake, D.R.; Brune, W.H.; Cantrell, C.A.; Cubison, M.J.; Diskin, G.S.; Jimenez, J.L.; et al. Observations of total RONO2 over the boreal forest: NOx sinks and HNO3 sources. Atmos. Chem. Phys. 2013, 13, 4543–4562. [Google Scholar] [CrossRef]
- Zellweger, C.; Ammann, M.; Buchmann, B.; Hofer, P.; Lugauer, M.; Ruttimann, R.; Streit, N.; Weingartner, E.; Baltensperger, U. Summertime NOy speciation at the Jungfraujoch, 3580 m above sea level, Switzerland. J. Geophys. Res. Atmos. 2000, 105, 6655–6667. [Google Scholar] [CrossRef] [Green Version]
- Stavrakou, T.; Muller, J.F.; Boersma, K.F.; van der A, R.J.; Kurokawa, J.; Ohara, T.; Zhang, Q. Key chemical NOx sink uncertainties and how they influence top-down emissions of nitrogen oxides. Atmos. Chem. Phys. 2013, 13, 9057–9082. [Google Scholar] [CrossRef] [Green Version]
- Cariolle, D.; Evans, M.J.; Chipperfield, M.P.; Butkovskaya, N.; Kukui, A.; Le Bras, G. Impact of the new HNO3-forming channel of the HO2 + NO reaction on tropospheric HNO3, NOx, HOx and ozone. Atmos. Chem. Phys. 2008, 8, 4061–4068. [Google Scholar] [CrossRef] [Green Version]
- Sovde, O.A.; Hoyle, C.R.; Myhre, G.; Isaksen, I.S.A. The HNO3 forming branch of the HO2 + NO reaction: Pre-industrial-to-present trends in atmospheric species and radiative forcings. Atmos. Chem. Phys. 2012, 12, 7725. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, N.; Eger, P.; Shenolikar, J.; Sobanski, N.; Schuladen, J.; Dienhart, D.; Hottmann, B.; Tadic, I.; Fischer, H.; Martinez, M.; et al. Reactive nitrogen around the Arabian Peninsula and in the Mediterranean Sea during the 2017 AQABA ship campaign. Atmos. Chem. Phys. 2021, 21, 7473–7498. [Google Scholar] [CrossRef]
- Eatough, D.J.; White, V.F.; Hansen, L.D.; Eatough, N.L.; Ellis, E.C. Hydration of nitric-acid and its collection in the atmosphere by diffusion denuders. Anal. Chem. 1985, 57, 743–748. [Google Scholar] [CrossRef]
- Forrest, J.; Tanner, R.L.; Spandau, D.; Dottavio, T.; Newman, L. Determination of total inorganic nitrate utilizing collection of nitric-acid on NaCl-impregnated filters. Atmos. Environ. 1980, 14, 137–144. [Google Scholar] [CrossRef]
- Place, B.K.; Young, C.J.; Ziegler, S.E.; Edwards, K.A.; Salehpoor, L.; VandenBoer, T.C. Passive sampling capabilities for ultra-trace quantitation of atmospheric nitric acid (HNO3) in remote environments. Atmos. Environ. 2018, 191, 360–369. [Google Scholar] [CrossRef]
- Bai, H.; Lu, C.; Chang, K.F.; Fang, G.C. Sources of sampling error for field measurement of nitric acid gas by a denuder system. Atmos. Environ. 2003, 37, 941–947. [Google Scholar] [CrossRef]
- Phillips, G.J.; Makkonen, U.; Schuster, G.; Sobanski, N.; Hakola, H.; Crowley, J.N. The detection of nocturnal N2O5 as HNO3 by alkali- and aqueous-denuder techniques. Atmos. Meas. Tech. 2013, 6, 231–237. [Google Scholar] [CrossRef]
- Huey, L.G.; Dunlea, E.J.; Lovejoy, E.R.; Hanson, D.R.; Norton, R.B.; Fehsenfeld, F.C.; Howard, C.J. Fast time response measurements of HNO3 in air with a chemical ionization mass spectrometer. J. Geophys. Res. Atmos. 1998, 103, 3355–3360. [Google Scholar] [CrossRef]
- Hanke, M.; Umann, B.; Uecker, J.; Arnold, F.; Bunz, H. Atmospheric measurements of gas-phase HNO3 and SO2 using chemical ionization mass spectrometry during the MINATROC field campaign 2000 on Monte Cimone. Atmos. Chem. Phys. 2003, 3, 417–436. [Google Scholar] [CrossRef] [Green Version]
- Miller, T.M.; Ballenthin, J.O.; Meads, R.F.; Hunton, D.E.; Thorn, W.F.; Viggiano, A.A.; Kondo, Y.; Koike, M.; Zhao, Y.J. Chemical ionization mass spectrometer technique for the measurement of HNO3 in air traffic corridors in the upper troposphere during the SONEX campaign. J. Geophys. Res. Atmos. 2000, 105, 3701–3707. [Google Scholar] [CrossRef]
- Horii, C.V.; Zahniser, M.S.; Nelson, D.D.; McManus, J.B.; Wofsy, S.C. Nitric acid and nitrogen dioxide flux measurements: A new application of tunable diode laser absorption spectroscopy. In Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II; SPIE: Bellingham, WA, USA, 1999; Volume 3758, pp. 152–161. [Google Scholar] [CrossRef]
- Toci, G.; Mazzinghi, P.; Mielke, B.; Stefanutti, L. An airborne diode laser spectrometer for the simultaneous measurement of H2O and HNO3 content of stratospheric cirrus clouds. Opt. Lasers Eng. 2002, 37, 459–480. [Google Scholar] [CrossRef]
- Dyroff, C. Optimum signal-to-noise ratio in off-axis integrated cavity output spectroscopy. Opt. Lett. 2011, 36, 1110. [Google Scholar] [CrossRef]
- Roscioli, J.R.; Zahniser, M.S.; Nelson, D.D.; Herndon, S.C.; Kolb, C.E. New approaches to measuring sticky molecules: Improvement of instrumental response times using active passivation. J. Phys. Chem. A 2016, 120, 1347–1357. [Google Scholar] [CrossRef]
- Sobanski, N.; Tuzson, B.; Scheidegger, P.; Looser, H.; Kupferschmid, A.; Iturrate, M.; Pascale, C.; Huglin, C.; Emmenegger, L. Advances in high-precision NO2 measurement by quantum cascade laser absorption spectroscopy. Appl. Sci. 2021, 11, 1222. [Google Scholar] [CrossRef]
- Bereiter, B.; Tuzson, B.; Scheidegger, P.; Kupferschmid, A.; Looser, H.; Machler, L.; Baggenstos, D.; Schmitt, J.; Fischer, H.; Emmenegger, L. High-precision laser spectrometer for multiple greenhouse gas analysis in 1 mL air from ice core samples. Atmos. Meas. Tech. 2020, 13, 6391–6406. [Google Scholar] [CrossRef]
- Fischer, M.; Tuzson, B.; Hugi, A.; Bronnimann, R.; Kunz, A.; Blaser, S.; Rochat, M.; Landry, O.; Muller, A.; Emmenegger, L. Intermittent operation of QC-lasers for mid-IR spectroscopy with low heat dissipation: Tuning characteristics and driving electronics. Opt. Express 2014, 22, 7014–7027. [Google Scholar] [CrossRef]
- Liu, C.; Tuzson, B.; Scheidegger, P.; Looser, H.; Bereiter, B.; Graf, M.; Hundt, M.; Aseev, O.; Maas, D.; Emmenegger, L. Laser driving and data processing concept for mobile trace gas sensing: Design and implementation. Rev. Sci. Instrum. 2018, 89, 065107. [Google Scholar] [CrossRef] [Green Version]
- Gordon, I.; Rothman, L.; Hargreaves, R.; Hashemi, R.; Karlovets, E.; Skinner, F.; Conway, E.; Hill, C.; Kochanov, R.; Tan, Y.; et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
- Vaittinen, O.; Metsala, M.; Persijn, S.; Vainio, M.; Halonen, L. Adsorption of ammonia on treated stainless steel and polymer surfaces. Appl. Phys. B Lasers Opt. 2014, 115, 185–196. [Google Scholar] [CrossRef]
- Tuzson, B.; Zeyer, K.; Steinbacher, M.; McManus, J.B.; Nelson, D.D.; Zahniser, M.S.; Emmenegger, L. Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy. Atmos. Meas. Tech. 2013, 6, 927–936. [Google Scholar] [CrossRef] [Green Version]
- Neuman, J.A.; Huey, L.G.; Ryerson, T.B.; Fahey, D.W. Study of inlet materials for sampling atmospheric nitric acid. Environ. Sci. Technol. 1999, 33, 1133–1136. [Google Scholar] [CrossRef]
- Pascale, C.; Guillevic, M.; Ackermann, A.; Leuenberger, D.; Niederhauser, B. Two generators to produce SI-traceable reference gas mixtures for reactive compounds at atmospheric levels. Meas. Sci. Technol. 2017, 28, 124002. [Google Scholar] [CrossRef] [Green Version]
- Fountoukis, C.; Nenes, A. ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42−-NO3--Cl--H2O aerosols. Atmos. Chem. Phys. 2007, 7, 4639–4659. [Google Scholar] [CrossRef] [Green Version]
- Werle, P.; Mucke, R.; Slemr, F. The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption-spectroscopy (TDLAS). Appl. Phys. B Photophys. Laser Chem. 1993, 57, 131–139. [Google Scholar] [CrossRef]
- McManus, J.B.; Zahniser, M.S.; Nelson, D.D.; Shorter, J.H.; Herndon, S.; Wood, E.; Wehr, R. Application of quantum cascade lasers to high-precision atmospheric trace gas measurements. Opt. Eng. 2010, 49, 111124. [Google Scholar] [CrossRef]
- Perrin, A.; Manceron, L.; Armante, R.; Kwabia-Tchana, F.; Roy, P.; Doizi, D.; Toon, G.C. The 5.8 μm absorption bands for nitric acid H14N16O3: Line positions and intensities for the ν2 band at 1709.567 cm−1 and for its first associated hot bands (ν2 + ν9 − ν9, ν2 + ν7 − ν7, ν2 + ν6 − ν6). Mol. Phys. 2021, 120, e1998931. [Google Scholar] [CrossRef]
- Grosjean, D.; Harrison, J. Response of chemi-luminescence NOx analyzers and ultraviolet ozone analyzers to organic air-pollutants. Environ. Sci. Technol. 1985, 19, 862–865. [Google Scholar] [CrossRef]
- Dunlea, E.J.; Herndon, S.C.; Nelson, D.D.; Volkamer, R.M.; San Martini, F.; Sheehy, P.M.; Zahniser, M.S.; Shorter, J.H.; Wormhoudt, J.C.; Lamb, B.K.; et al. Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment. Atmos. Chem. Phys. 2007, 7, 2691–2704. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobanski, N.; Tuzson, B.; Scheidegger, P.; Looser, H.; Hüglin, C.; Emmenegger, L. A High-Precision Mid-Infrared Spectrometer for Ambient HNO3 Measurements. Sensors 2022, 22, 9158. https://doi.org/10.3390/s22239158
Sobanski N, Tuzson B, Scheidegger P, Looser H, Hüglin C, Emmenegger L. A High-Precision Mid-Infrared Spectrometer for Ambient HNO3 Measurements. Sensors. 2022; 22(23):9158. https://doi.org/10.3390/s22239158
Chicago/Turabian StyleSobanski, Nicolas, Béla Tuzson, Philipp Scheidegger, Herbert Looser, Christoph Hüglin, and Lukas Emmenegger. 2022. "A High-Precision Mid-Infrared Spectrometer for Ambient HNO3 Measurements" Sensors 22, no. 23: 9158. https://doi.org/10.3390/s22239158
APA StyleSobanski, N., Tuzson, B., Scheidegger, P., Looser, H., Hüglin, C., & Emmenegger, L. (2022). A High-Precision Mid-Infrared Spectrometer for Ambient HNO3 Measurements. Sensors, 22(23), 9158. https://doi.org/10.3390/s22239158