Assessing the Impact of Wildlife on Vegetation Cover Change, Northeast Namibia, Based on MODIS Satellite Imagery (2002–2021)
Abstract
:1. Introduction
- (i)
- Assess the impact of wildlife (elephants and other large herbivores) on the vegetation cover change (greening and browning) in the last 19 years (2002–2021).
- (ii)
- Assess the effects of anthropogenic activities on wildlife migration and vegetation cover change (greening and browning).
2. Materials and Methods
2.1. Study Area
2.2. Satellite and UAV Field Data and Image Pre-Processing
2.3. Field Sample Locations and Elephant Tracking Data
2.4. Data Analysis
3. Results
Pattern of Vegetation Trend: 2002–2021
4. Discussion
Potential Impact of Wildlife on Vegetation Cover and Land Degradation: 2002–2021
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wessels, K.J.; Prince, S.D.; Malherbe, J.; Small, J. Can Human-Induced Land Degradation be Distinguished from the Effects of Rainfall Variability ? A Case Study in South Africa. J. Arid Environ. 2007, 68, 271–297. [Google Scholar] [CrossRef]
- IPBES. Summary for Policymakers of the Thematic Assessment Report on Land Degradation and Resporation of the Intergovernmental Platform on Biodiversity and Ecosystem Services. J. Rural. Plan. Assoc. 2018, 36, 13–16. [Google Scholar]
- Song, C.; Kim, W.; Kim, J.; Gebru, B.M.; Adane, G.B.; Choi, Y.E.; Lee, W. Spatial Assessment of Land Degradation using MEDALUS Focusing on Potential Afforestation and Reforestation Areas in Ethiopia. Land Degrad. Dev. 2022, 33, 79–93. [Google Scholar] [CrossRef]
- Lewińska, K.E.; Hostert, P.; Buchner, J.; Bleyhl, B.; Radeloff, V.C. Short-Term Vegetation Loss Versus Decadal Degradation of Grasslands in the Caucasus Based on Cumulative Endmember Fractions. Remote Sens. Environ. 2020, 248, 111969. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hochard, J.P. Land Degradation and Poverty. Nat. Sustain. 2018, 1, 623–631. [Google Scholar] [CrossRef]
- Jiang, L.; Jiapaer, G.; Bao, A.; Li, Y.; Guo, H.; Zheng, G.; Chen, T.; De Maeyer, P. Assessing Land Degradation and Quantifying its Drivers in the Amudarya River Delta. Ecol. Indic. 2019, 107, 105595. [Google Scholar] [CrossRef]
- Nkonya, E.; Srinivasan, R.; Anderson, W.; Kato, E. Economics of Land Degradation and Improvement in Bhutan. In Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development; Springer International Publishin AG: Cham, Switzerland, 2015; pp. 327–383. [Google Scholar]
- Sklenicka, P. Classification of Farmland Ownership Fragmentation as a Cause of Land Degradation: A Review on Typology, Consequences, and Remedies. Land Use Policy 2016, 57, 694–701. [Google Scholar] [CrossRef] [Green Version]
- Bossio, D.; Geheb, K.; Critchley, W. Managing Water by Managing Land: Addressing Land Degradation to Improve Water Productivity and Rural Livelihoods. Agric. Water Manag. 2010, 97, 536–542. [Google Scholar] [CrossRef]
- Prăvălie, R.; Patriche, C.; Bandoc, G. Quantification of Land Degradation Sensitivity Areas in Southern and Central Southeastern Europe. New Results Based on Improving DISMED Methodology with New Climate Data. Catena 2017, 158, 309–320. [Google Scholar] [CrossRef]
- Röder, A.; Pröpper, M.; Stellmes, M.; Schneibel, A.; Hill, J. Assessing Urban Growth and Rural Land use Transformations in a Cross-Border Situation in Northern Namibia and Southern Angola. Land Use Policy 2015, 42, 340–354. [Google Scholar] [CrossRef]
- De Blécourt, M.; Röder, A.; Gröngröft, A.; Baumann, S.; Frantz, D.; Eschenbach, A. Deforestation for Agricultural Expansion in SW Zambia and NE Namibia and the Impacts on Soil Fertility, Soil Organic Carbon- and Nutrient Levels. Biodivers. Ecol. 2018, 6, 242–250. [Google Scholar] [CrossRef]
- Batunacun; Wieland, R.; Lakes, T.; Yunfeng, H.; Nendel, C. Identifying Drivers of Land Degradation in Xilingol, China, between 1975 and 2015. Land Use Policy 2019, 83, 543–559. [Google Scholar] [CrossRef]
- Karamesouti, M.; Detsis, V.; Kounalaki, A.; Vasiliou, P.; Salvati, L.; Kosmas, C. Land-use and Land Degradation Processes Affecting Soil Resources: Evidence from a Traditional Mediterranean Cropland (Greece). Catena 2015, 132, 45–55. [Google Scholar] [CrossRef]
- Perovic, V.; Kadovic, R.; Durdevic, V.; Pavlovic, D.; Pavlovic, M.; Cakmak, D.; Mitrovic, M.; Pavlovic, P. Major Drivers of Land Degradation Risk in Western Serbia: Current Trends and Future Scenarios. Ecol. Indic. 2021, 123, 107377. [Google Scholar] [CrossRef]
- Geist, H.J.; Lambin, E.F. Proximate Causes and Underlying Driving Forces of Tropical Deforestation. Bioscience 2002, 52, 143. [Google Scholar] [CrossRef]
- Tegegne, Y.T.; Lindner, M.; Fobissie, K.; Kanninen, M. Evolution of Drivers of Deforestation and Forest Degradation in the Congo Basin Forests: Exploring Possible Policy Options to Address Forest Loss. Land Use Policy 2016, 51, 312–324. [Google Scholar] [CrossRef]
- Brink, A.B.; Bodart, C.; Brodsky, L.; Defourney, P.; Ernst, C.; Donney, F.; Lupi, A.; Tuckova, K. Anthropogenic Pressure in East Africa—Monitoring 20 Years of Land Cover Changes by Means of Medium Resolution Satellite Data. ITC J. 2014, 28, 60–69. [Google Scholar] [CrossRef]
- NAPCOD. Third National Action Programme for Namibia to Implement the United Nations Convention to Combat Desertification 2014–2024. 2014, pp. 1–80. Available online: https://www.unccd.int/sites/default/files/naps/Namibia-2014-2024-eng.pdf (accessed on 8 May 2022).
- Bojö, J. The Costs of Land Degradation in Sub-Saharan Africa. Ecol. Econ. 1996, 16, 161–173. [Google Scholar] [CrossRef]
- Hoffman, M.T.; Todd, S. A National Review of Land Degradation in South Africa: The Influence of Biophysical and Socio-Economic Factors. J. South. Afr. Stud. 2000, 26, 743–758. [Google Scholar] [CrossRef]
- Ibrahim, Y.Z.; Balzter, H.; Kaduk, J.ö.; Tucker, C.J. Land Degradation Assessment using Residual Trend Analysis of GIMMS NDVI3g, Soil Moisture and Rainfall in Sub-Saharan West Africa from 1982 to 2012. Remote Sens. 2015, 7, 5471–5494. [Google Scholar] [CrossRef] [Green Version]
- Weinzierl, T.; Wehberg, J.; Böhner, J.; Conrad, O. Spatial Assessment of Land Degradation Risk for the Okavango River Catchment, Southern Africa. Land Degrad. Dev. 2016, 27, 281–294. [Google Scholar] [CrossRef]
- Gbagir, A.M.G.; Tegegne, Y.T.; Colpaert, A. Historical Trajectory in Vegetation Cover in Northeastern Namibia Based on AVHRR Satellite Imagery (1982–2015). Land 2019, 8, 160. [Google Scholar] [CrossRef] [Green Version]
- Chase, M.J.; Griffin, C.R. Elephants Caught in the Middle: Impacts of War, Fences and People on Elephant Distribution and Abundance in the Caprivi Strip, Namibia. Afr. J. Ecol. 2009, 47, 223–233. [Google Scholar] [CrossRef]
- Dirkx, E.; Hager, C.; Tadross, M.; Bethune, S.; Curtis, B. Climate Change Vulnerability & Adaptation Assessment Namibia Final Report; Developed by Desert Research Foundation of Namibia & Climate Systems Analysis Group for the Ministry of Environment and Tourism; Desert Research Foundation of Namibia Climate System Analysis Group: Windhoek, Namibia, 2008; pp. 1–167. [Google Scholar]
- Kamwi, J.M.; Chirwa, P.W.C.; Manda, S.O.M.; Graz, P.F.; Kätsch, C. Livelihoods, Land use and Land Cover Change in the Zambezi Region, Namibia. Popul. Environ. 2015, 37, 207–230. [Google Scholar] [CrossRef] [Green Version]
- Kamwi, J.M.; Kaetsch, C.; Graz, F.P.; Chirwa, P.; Manda, S. Trends in Land use and Land Cover Change in the Protected and Communal Areas of the Zambezi Region, Namibia. Environ. Monit. Assess. 2017, 189, 242. [Google Scholar] [CrossRef]
- Wingate, V.R.; Phinn, S.R.; Kuhn, N.; Bloemertz, L.; Dhanjal-Adams, K. Mapping Decadal Land Cover Changes in the Woodlands of North Eastern Namibia from 1975 to 2014 using the Landsat Satellite Archived Data. Remote Sens. 2016, 8, 681. [Google Scholar] [CrossRef] [Green Version]
- Purdon, A.; Mole, M.A.; Chase, M.J.; van Aarde, R.J. Partial Migration in Savanna Elephant Populations Distributed Across Southern Africa. Sci. Rep. 2018, 8, 11331. [Google Scholar] [CrossRef] [Green Version]
- Stoldt, M.; Göttert, T.; Mann, C.; Zeller, U. Transfrontier Conservation Areas and Human-Wildlife Conflict: The Case of the Namibian Component of the Kavango-Zambezi (KAZA) TFCA. Sci. Rep. 2020, 10, 7964. [Google Scholar] [CrossRef]
- O’connell-Rodwell, C.E.; Rodwell, T.; Rice, M.; Hart, L.A. Living with the Modern Conservation Paradigm: Can Agricultural Communities Co-Exist with Elephants? A Five-Year Case Study in East Caprivi, Namibia. Biol. Conserv. 2000, 93, 381–391. [Google Scholar] [CrossRef]
- Thornley, R.; Spencer, M.; Zitzer, H.R.; Parr, C.L. Woody Vegetation Damage by the African Elephant during Severe Drought at Pongola Game Reserve, South Africa. Afr. J. Ecol. 2020, 58, 658. [Google Scholar] [CrossRef]
- Mwambeo, H.M.; Maitho, T. Factors Influencing Elephants to Destroy Forest Trees especially Olea Africana: The Case of Ngare Ndare Forest Reserve in Meru County, Kenya. Ethiop. J. Environ. Stud. Manag. 2015, 8, 398–407. [Google Scholar] [CrossRef] [Green Version]
- Guldemond, R.; Van Aarde, R. A Meta-Analysis of the Impact of African Elephants on Savanna Vegetation. J. Wildl. Manag. 2008, 72, 892–899. [Google Scholar] [CrossRef]
- Robinson, J.A.; Lulla, K.P.; Kashiwagi, M.; Suzuki, M.; Nellis, M.D.; Bussing, C.E.; Long, W.J.L.; McKenzie, L.J. Conservation Applications of Astronaut Photographs of Earth: Tidal-Flat Loss (Japan), Elephant Effects on Vegetation (Botswana), and Seagrass and Mangrove Monitoring (Australia). Conserv. Biol. 2001, 15, 876–884. [Google Scholar] [CrossRef] [Green Version]
- Midgley, J.J.; Balfour, D.; Kerley, G.I. Why do Elephants Damage Savanna Trees? S. Afr. J. Sci. 2005, 101, 213–215. [Google Scholar] [CrossRef]
- Vincent, K.; Janis, S.; Graham, K. A Temporal Analysis of Elephant-Induced Thicket Degradation in Addo Elephant National Park, Eastern Cape, South Africa FULL TEXT Introduction. Rangel. Ecol. Manag. 2015, 68, 461–469. [Google Scholar] [CrossRef]
- Ihwagi, F.W.; Vollrath, F.; Chira, R.M.; Douglas-Hamilton, I.; Kironchi, G. The Impact of Elephants, Loxodonta africana, on Woody Vegetation through Selective Debarking in Samburu and Buffalo Springs National Reserves, Kenya. Afr. J. Ecol. 2010, 48, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Rugemalila, D.M.; Anderson, T.M.; Holdo, R.M. Precipitation and Elephants, Not Fire, Shape Tree Community Composition in Serengeti National Park, Tanzania. Biotropica 2016, 48, 476–482. [Google Scholar] [CrossRef]
- Trollope, W.S.W.; Trollope, L.A.; Biggs, H.C.; Pienaar, D.; Potgieter, A.L.F. Long-Term Changes in the Woody Vegetation of the Kruger National Park, with Special Reference to the Effects of Elephants and Fire. Koedoe 1998, 2, 103–112. [Google Scholar]
- Holdo, R.M.; Holt, R.D.; Fryxell, J.M. Grazers, Browsers, and Fire Influence the Extent and Spatial Pattern of Tree Cover in the Serengeti. Ecol. Appl. 2009, 19, 95–109. [Google Scholar] [CrossRef]
- Morrison, T.A.; Holdo, R.M.; Anderson, T.M.; Gilliam, F. Elephant Damage, Not Fire Or Rainfall, Explains Mortality of Overstorey Trees in Serengeti. J. Ecol. 2016, 104, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Morrison, J.; Higginbottom, T.; Symeonakis, E.; Jones, M.; Omengo, F.; Walker, S.; Cain, B. Detecting Vegetation Change in Response to Confining Elephants in Forests using MODIS Time-Series and BFAST. Remote Sens. 2018, 10, 1075. [Google Scholar] [CrossRef] [Green Version]
- Cassidy, L.; Fynn, R.; Sethebe, B. Effects of Restriction of Wild Herbivore Movement on Woody and Herbaceous Vegetation in the Okavango Delta Botswana. Afr. J. Ecol. 2013, 51, 513–527. [Google Scholar] [CrossRef]
- Buchholtz, E.K.; Spragg, S.; Songhurst, A.; Stronza, A.; Mcculloch, G.; Fitzgerald, L.A. Anthropogenic Impact on Wildlife Resource use: Spatial and Temporal Shifts in Elephants’ Access to Water. Afr. J. Ecol. 2021, 59, 614. [Google Scholar] [CrossRef]
- Watson, L.H.; Cameron, M.J.; Iifo, F. Elephant Herbivory of Knob-thorn (Senegalia nigrescens) and Ivory Palm (Hyphaene petersiana) in Bwabwata National Park, Caprivi, Namibia: The Role of Ivory Palm as a Biotic Refuge. Afr. J. Ecol. 2020, 58, 14–22. [Google Scholar] [CrossRef]
- Colpaert, A.; Matengu, K.; Polojärvi, K. Land use Practices in Caprivi ’s Changing Political Environment. J. Stud. Hum. Soc. Sci. 2013, 2, 141–162. [Google Scholar]
- Mlambo, L.; Shekede, M.D.; Adam, E.; Odindi, J.; Murwira, A. Home Range and Space use by African Elephants (Loxodonta africana) in Hwange National Park, Zimbabwe. Afr. J. Ecol. 2021, 59, 842. [Google Scholar] [CrossRef]
- Bakker, E.S.; Gill, J.L.; Johnson, C.N.; Vera, F.W.M.; Sandom, C.J.; Asner, G.P.A.; Svenning, J.C. Combining Paleo-Data and Modern Exclosure Experiments to Assess the Impact of Megafauna Extinctions on Woody Vegetation. Proc. Natl. Acad. Sci. USA 2016, 113, 847–855. [Google Scholar] [CrossRef] [Green Version]
- Meyer, M.; Klingelhoeffer, E.; Naidoo, R.; Wingate, V.; Börner, J. Tourism Opportunities Drive Woodland and Wildlife Conservation Outcomes of Community-Based Conservation in Namibia’s Zambezi Region. Ecol. Econ. 2021, 180. [Google Scholar] [CrossRef]
- Klintenberg, P.; Seely, M. Land Degradation Monitoring in Namibia: A First Approximation. Environ. Monit. Assess. 2004, 99, 5–21. [Google Scholar] [CrossRef]
- Schnegg, M.; Kiaka, R.D. Subsidized Elephants: Community-Based Resource Governance and Environmental (in) Justice in Namibia. Geoforum 2018, 93, 105–115. [Google Scholar] [CrossRef]
- De Jong, R.; Verbesselt, J.; Zeileis, A.; Schaepman, M. Shifts in Global Vegetation Activity Trends. Remote Sens. 2013, 5, 1117–1133. [Google Scholar] [CrossRef] [Green Version]
- Heck, E.; de Beurs, K.M.; Owsley, B.C.; Henebry, G.M. Evaluation of the MODIS Collections 5 and 6 for Change Analysis of Vegetation and Land Surface Temperature Dynamics in North and South America. ISPRS J. Photogramm. Remote Sens. 2019, 156, 121–134. [Google Scholar] [CrossRef]
- Fortin, J.A.; Cardille, J.A.; Perez, E. Multi-Sensor Detection of Forest-Cover Change across 45 years in Mato Grosso, Brazil. Remote Sens. Environ. 2020, 238, 111266. [Google Scholar] [CrossRef]
- Moon, M.; Zhang, X.; Henebry, G.M.; Liu, L.; Gray, J.M.; Melaas, E.K.; Friedl, M.A. Long-Term Continuity in Land Surface Phenology Measurements: A Comparative Assessment of the MODIS Land Cover Dynamics and VIIRS Land Surface Phenology Products. Remote Sens. Environ. 2019, 226, 74–92. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M. Remote Sensing Imagery in Vegetation Mapping: A Review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Basommi, P.L.; Guan, Q.; Cheng, D. Exploring Land use and Land Cover Change in Themining Areas of Wa East District, Ghana usingSatellite Imagery. Open Geosci. 2015, 7, 618–626. [Google Scholar] [CrossRef]
- Ren, Y.; Li, Z.; Li, J.; Ding, Y.; Miao, X. Analysis of Land use/Cover Change and Driving Forces in the Selenga River Basin. Sensors 2022, 22, 1041. [Google Scholar] [CrossRef]
- Afrin, S.; Gupta, A.; Farjad, B.; Ahmed, M.R.; Achari, G.; Hassan, Q.K. Development of Land-use/Land-Cover Maps using Landsat-8 and MODIS Data, and their Integration for Hydro-Ecological Applications. Sensors 2019, 19, 4891. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Woodcock, C.E.; Olofsson, P.; Hutyra, L.R. Spatiotemporal Assessment of Land use/Land Cover Change and Associated Carbon Emissions and Uptake in the Mekong River Basin. Remote Sens. Environ. 2021, 256, 112336. [Google Scholar] [CrossRef]
- Xu, L.; Herold, M.; Tsendbazar, N.; Masiliūnas, D.; Li, L.; Lesiv, M.; Fritz, S.; Verbesselt, J. Time Series Analysis for Global Land Cover Change Monitoring: A Comparison across Sensors. Remote Sens. Environ. 2022, 271, 112905. [Google Scholar] [CrossRef]
- Cowie, A.L.; Orr, B.J.; Castillo Sanchez, V.M.; Chasek, P.; Crossman, N.D.; Erlewein, A.; Louwagie, G.; Maron, M.; Metternicht, G.I.; Minelli, S.; et al. Land in Balance: The Scientific Conceptual Framework for Land Degradation Neutrality. Environ. Sci. Policy 2018, 79, 25–35. [Google Scholar] [CrossRef]
- Warren, A. Land Degradation is Contextual. Land Degrad. Dev. 2002, 13, 449–459. [Google Scholar] [CrossRef]
- Khumalo, K.E.; Yung, L.A. Women, Human-Wildlife Conflict, and CBNRM: Hidden Impacts and Vulnerabilities in Kwandu Conservancy, Namibia. Conserv. Soc. 2015, 13, 232–243. [Google Scholar] [CrossRef]
- Detsch, F. Download and Process GIMMS NDVI3g Data; R Package Version 1.2.1; R Core Team: Vienna, Austria, 2021; pp. 1–18. [Google Scholar]
- Ruan, Z.; Kuang, Y.; He, Y.; Zhen, W.; Ding, S. Detecting Vegetation Change in the Pearl River Delta Region Based on Time Series Segmentation and Residual Trend Analysis (TSS-RESTREND) and MODIS NDVI. Remote Sens. 2020, 12, 4049. [Google Scholar] [CrossRef]
- Burrell, A.L.; Evans, J.P.; Liu, Y. Detecting Dryland Degradation using Time Series Segmentation and Residual Trend Analysis (TSS-RESTREND). Remote Sens. Environ. 2017, 197, 43–57. [Google Scholar] [CrossRef]
- Wessels, K.J.; Prince, S.D.; Frost, P.E.; Van Zyl, D. Assessing the Effects of Human-Induced Land Degradation in the Former Homelands of Northern South Africa with a 1 km AVHRR NDVI Time-Series. Remote Sens. Environ. 2004, 91, 47–67. [Google Scholar] [CrossRef]
- Evans, J.; Geerken, R. Discrimination between Climate and Human-Induced Dryland Degradation. J. Arid Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Ashraf, M.S.; Ahmad, I.; Khan, N.M.; Zhang, F.; Bilal, A.; Guo, J. Streamflow Variations in Monthly, Seasonal, Annual and Extreme Values using Mann-Kendall, Spearmen’s Rho and Innovative Trend Analysis. Water Resour Manag. 2020, 35, 243–261. [Google Scholar] [CrossRef]
- Fan, X.; Xuan, C.; Zhang, M.; Ma, Y.; Meng, Y. Estimation of Spatial-Temporal Distribution of Grazing Intensity Based on Sheep Trajectory Data. Sensors 2022, 22, 1469. [Google Scholar] [CrossRef]
- Mufune, P. Community Based Natural Resource Management (CBNRM) and Sustainable Development in Namibia. J. Land Rural Stud. 2015, 3, 121–138. [Google Scholar] [CrossRef]
- NACSO. Namibia’s Communal Conservancies: A Review of Progress and Challenges in 2011; NASCO: Windhoek, Namibia, 2013; p. 59. [Google Scholar]
- Chase, M. Status of Wildlife Populations and Land Degradation in Botswana’s Forest Reserves and Chobe District. 2013. Available online: https://library.wur.nl/ojs/index.php/Botswana_documents/article/view/15966 (accessed on 5 April 2022).
- Mendelsohn, J.; Jarvis, A.; Roberst, C.; Robertson, T. Atlas of Namibia: A Portrait of the Land and Its People.; Published for the Ministry of Environment and Tourism by David Philip: Cape Town, South Africa, 2002; pp. 1–201. [Google Scholar]
- Mendelsohn, J.; Roberts, C. An Environmental Profile and Atlas of Caprivi; Directorate of Environment and Tourism Affairs, Ministry of Enviornment and Tourism: Windhoek, Namibia, 1997; pp. 1–57. [Google Scholar]
- AWT. Africa Wildlife Tracking Tag User Manual:Version 02. (n.d). AWT Tag User Manual.pdf. Available online: africawildlifetracking.com (accessed on 5 April 2022).
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting Trend and Seasonal Changes in Satellite Image Time Series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Verbesselt, J.; Zeileis, A.; Hyndman, R. Breaks for Additive Season and Trend (BFAST). Technical Report. 2012. Available online: http://r-forge.r-project.org/projects/bfast (accessed on 5 April 2022).
- Jong, R.; Verbesselt, J.; Schaepman, M.E.; Bruin, S. Trend Changes in Global Greening and Browning: Contribution of Short-Term Trends to Longer-Term Change. Global Change Biol. 2012, 18, 642–655. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Mann Source: Econom. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend Detection in Hydrologic Data: The Mann–Kendall Trend Test Under the Scaling Hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Long, S.; Fatoyinbo, T.E.; Policelli, F. Flood Extent Mapping for Namibia using Change Detection and Thresholding with SAR. Environ. Res. Lett. 2014, 9, 35002. [Google Scholar] [CrossRef]
- Thouless, C.R.; Dublin, H.T.; Blanc, J.J.; Skinner, D.P.; Daniel, T.E.; Taylor, R.D.; Maisels, F.; Frederick, H.L.; Bouché, P. African Elephant Status Report 2007: An Update from the African Elephant Database; Occassional Paper Series of the IUCN Species Survival Commission, no.60 IUCN/SSC Africa Elephant Specialist Group; IUCN: Gland, Switzerland, 2016. [Google Scholar]
- Rodwell, T. Wildlife Resources in the Caprivi, Namibia: The Results of an Aerial Census in 1994 and Comparisons with Past Surveys; Research Discussion Paper Number 9. 1995. Available online: https://www.researchgate.net/publication/267681244_Wildlife_Resources_in_the_Caprivi_Namibia_The_Results_of_an_Aerial_Census_in_1994_and_Comparisons_with_Past_Surveys (accessed on 5 April 2022).
- Craig, G.C.; St, D.C.; Gibson. Aerial Survey of North-East Namibia- Elephants and Other Wildlife in Zambezi Region September/October 2019; Ministry of Environment & Tourism: Windhoek, Namibia, 2019. [Google Scholar]
- Chase, M.J.; Griffin, C.R. Elephants of South-East Angola in War and Peace: Their Decline, Re-Colonization and Recent Status. Afr. J. Ecol. 2011, 49, 353–361. [Google Scholar] [CrossRef]
- Mapaure, I.; Moe, S.R. Changes in the Structure and Composition of Miombo Woodlands Mediated by Elephants (Loxodonta africana) and Fire Over a 26-Year Period in North-Western Zimbabwe. Afr. J. Ecol. 2009, 47, 175–183. [Google Scholar] [CrossRef]
- Fullman, T.J.; Child, B. African Journal of Ecology—2012—Fullman—Water Distribution at Local and Landscape Scales Affects Tree Utilization By. Afr. J. Ecol. 2012, 51, 235–243. [Google Scholar] [CrossRef]
- Kamwi, J.M.; Chirwa, P.; Graz, F.P.; Manda, S.; Mosimane, A.W.; Kätsch, C. Livelihood Activities and Skills in Rural Areas of the Zambezi Region, Namibia: Implications for Policy and Poverty Reduction. Afr. J. Food Agric. Nutr. Dev. 2018, 18, 13074–13094. [Google Scholar] [CrossRef]
- Laamanen, R.; Michael, O. Ministry of Environment and Tourism Directorate of Forestry Forest Management Plan for the Salambala Conservancy Core Area Namibia-Finland Forestry Programme Forest Management Plan for the Salambala Conservancy Core Area-Draft; Ministry of Environment and Tourism Directorate of Forestry: Windhoek, Namibia, 2002; pp. 1–53. [Google Scholar]
- Pricope, N.G. Variable-Source Flood Pulsing in a Semi-Arid Transboundary Watershed: The Chobe River, Botswana and Namibia. Environ. Monit. Assess. 2013, 185, 1883–1906. [Google Scholar] [CrossRef]
- Skarpe, C.; Aarrestad, P.A.; Andreassen, H.P.; Dhillion, S.S.; Dimakatso, T.; du Toit, J.T.; Duncan; Halley, J.; Hytteborn, H.; Makhabu, S.; et al. The Return of the Giants: Ecological Effects of an Increasing Elephant Population. Ambio 2004, 33, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Herrero, H.V.; Southworth, J.; Bunting, E.; Kohlhaas, R.R.; Child, B. Integrating Surface-Based Temperature and Vegetation Abundance Estimates into Land Cover Classifications for Conservation Efforts in Savanna Landscapes. Sensors 2019, 19, 3456. [Google Scholar] [CrossRef] [Green Version]
- Bunting, E.; Southworth, J.; Herrero, H.; Ryan, S.; Waylen, P. Understanding Long-Term Savanna Vegetation Persistence across Three Drainage Basins in Southern Africa. Remote Sens. 2018, 10, 1013. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.H.; Joshi, D.R.; Clay, D.E.; Henebry, G.M. Characterizing Land Cover/Land use from Multiple Years of Landsat and MODIS Time Series: A Novel Approach using Land Surface Phenology Modeling and Random Forest Classifier. Remote Sens. Environ. 2020, 238, 111017. [Google Scholar] [CrossRef]
Year | No. of Individual Elephants Tracked | Period |
---|---|---|
2010 | 8 | 10–12 (3) |
2011 | 7 | 1–12 (12) |
2012 | 7 | 1–8 (8) |
2016 | 5 | 3–12 (8) |
2017 | 13 | 1–12 (12) |
2018 | 20 | 1–12 (12) |
2019 | 16 | 1–12 (12) |
2020 | 6 | 1–12 (12) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gbagir, A.-M.G.; Sikopo, C.S.; Matengu, K.K.; Colpaert, A. Assessing the Impact of Wildlife on Vegetation Cover Change, Northeast Namibia, Based on MODIS Satellite Imagery (2002–2021). Sensors 2022, 22, 4006. https://doi.org/10.3390/s22114006
Gbagir A-MG, Sikopo CS, Matengu KK, Colpaert A. Assessing the Impact of Wildlife on Vegetation Cover Change, Northeast Namibia, Based on MODIS Satellite Imagery (2002–2021). Sensors. 2022; 22(11):4006. https://doi.org/10.3390/s22114006
Chicago/Turabian StyleGbagir, Augustine-Moses Gaavwase, Colgar Sisamu Sikopo, Kenneth Kamwi Matengu, and Alfred Colpaert. 2022. "Assessing the Impact of Wildlife on Vegetation Cover Change, Northeast Namibia, Based on MODIS Satellite Imagery (2002–2021)" Sensors 22, no. 11: 4006. https://doi.org/10.3390/s22114006
APA StyleGbagir, A. -M. G., Sikopo, C. S., Matengu, K. K., & Colpaert, A. (2022). Assessing the Impact of Wildlife on Vegetation Cover Change, Northeast Namibia, Based on MODIS Satellite Imagery (2002–2021). Sensors, 22(11), 4006. https://doi.org/10.3390/s22114006