Satellite and UAV Platforms, Remote Sensing for Geographic Information Systems
Funding
Conflicts of Interest
References
- Cheng, Z.; Meng, J.; Shang, J.; Liu, J.; Huang, J.; Qiao, Y.; Qian, B.; Jing, Q.; Dong, T.; Yu, L. Generating Time-Series LAI Estimates of Maize Using Combined Methods Based on Multispectral UAV Observations and WOFOST Model. Sensors 2020, 20, 6006. [Google Scholar] [CrossRef] [PubMed]
- Qi, G.; Zhao, G.; Xi, X. Soil Salinity Inversion of Winter Wheat Areas Based on Satellite-Unmanned Aerial Vehicle-Ground Collaborative System in Coastal of the Yellow River Delta. Sensors 2020, 20, 6521. [Google Scholar] [CrossRef] [PubMed]
- Kentsch, S.; Cabezas, M.; Tomhave, L.; Groß, J.; Burkhard, B.; Lopez Caceres, M.; Waki, K.; Diez, Y. Analysis of UAV-Acquired Wetland Orthomosaics Using GIS, Computer Vision, Computational Topology and Deep Learning. Sensors 2021, 21, 471. [Google Scholar] [CrossRef] [PubMed]
- Kiam, J.; Besada-Portas, E.; Schulte, A. Hierarchical Mission Planning with a GA-Optimizer for Unmanned High Altitude Pseudo-Satellites. Sensors 2021, 21, 1630. [Google Scholar] [CrossRef] [PubMed]
- Ritz, E.; Bjerke, J.; Tømmervik, H. Monitoring Winter Stress Vulnerability of High-Latitude Understory Vegetation Using Intraspecific Trait Variability and Remote Sensing Approaches. Sensors 2020, 20, 2102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gbagir, A.; Colpaert, A. Assessing the Trend of the Trophic State of Lake Ladoga Based on Multi-Year (1997–2019) CMEMS GlobColour-Merged CHL-OC5 Satellite Observations. Sensors 2020, 20, 6881. [Google Scholar] [CrossRef] [PubMed]
- Gbagir, A.; Sikopo, C.; Matengu, K.; Colpaert, A. Assessing the Impact of Wildlife on Vegetation Cover Change, Northeast Namibia, Based on MODIS Satellite Imagery (2002–2021). Sensors 2022, 22, 4006. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Yang, K.; Li, X.; Cai, H. Automatic Seamline Determination for Urban Image Mosaicking Based on Road Probability Map from the D-LinkNet Neural Network. Sensors 2020, 20, 1832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagoda, M.; Rutkowska, M.; Lejba, P.; Katzer, J.; Obuchovski, R.; Šlikas, D. Satellite Laser Ranging for Retrieval of the Local Values of the Love h2 and Shida l2 Numbers for the Australian ILRS Stations. Sensors 2020, 20, 6851. [Google Scholar] [CrossRef] [PubMed]
- Jagoda, M. Determination of Motion Parameters of Selected Major Tectonic Plates Based on GNSS Station Positions and Velocities in the ITRF2014. Sensors 2021, 21, 5342. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colpaert, A. Satellite and UAV Platforms, Remote Sensing for Geographic Information Systems. Sensors 2022, 22, 4564. https://doi.org/10.3390/s22124564
Colpaert A. Satellite and UAV Platforms, Remote Sensing for Geographic Information Systems. Sensors. 2022; 22(12):4564. https://doi.org/10.3390/s22124564
Chicago/Turabian StyleColpaert, Alfred. 2022. "Satellite and UAV Platforms, Remote Sensing for Geographic Information Systems" Sensors 22, no. 12: 4564. https://doi.org/10.3390/s22124564
APA StyleColpaert, A. (2022). Satellite and UAV Platforms, Remote Sensing for Geographic Information Systems. Sensors, 22(12), 4564. https://doi.org/10.3390/s22124564