Analysis of Extended Information Provided by Bluetooth Traffic Monitoring Systems to Enhance Short-Term Level of Service Prediction
Abstract
:1. Introduction
- We formalize the introduction of time information into a short-time LOS predictor.
- We propose an improved RUSBoost LOS classifier that makes use of the temporal components of traffic information, achieving an overall success rate, which reaches predicting congestion up to 15 min in the future.
- We validate the performance of this LOS classifier with actual data from a BTMS in real operation in the SE-30 road in Seville, Spain.
- We study the contribution of secondary variables provided by BTMS, such as count and residence time, to the prediction of LOS.
- We analyze the predictor importance of the studied temporal features and extract conclusions about traffic’s temporal components.
2. Related Work
- We take LOS as the prediction objective, given that it is a standard variable representative of future traffic states.
- We propose an enhanced RUSBoost classifier that exploits spatio-temporal correlations found in TT data.
- We analyze the impact of temporal and spatial information on the performance of the resulting predictor.
- We train and validate the predictor by using 12 months of TT data collected by a BTMS deployed on the SE-30 and A-49 highways (Seville, Spain).
3. Materials and Methods
3.1. Previous Work
3.2. Empirical Data
3.3. Problem Statement
3.4. Configuration of Predictors
4. Results
4.1. Performance Results
4.2. Performance Comparison with Previous Results
4.3. Impact of Temporal Components on Performance
5. Discussion
5.1. Predictor Importance
5.2. Feature Selection
5.3. Other Variables Produced by a BTMS
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laña, I.; Del Ser, J.; Vélez, M.; Vlahogianni, E.I. Road Traffic Forecasting: Recent Advances and New Challenges. IEEE Intell. Transp. Syst. Mag. 2018, 10, 93–109. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Piao, X.; Liu, H.; Zhang, K. Traffic Data Reconstruction via Adaptive Spatial-Temporal Correlations. IEEE Trans. Intell. Transp. Syst. 2019, 20, 1531–1543. [Google Scholar] [CrossRef]
- Moonam, H.M.; Qin, X.; Zhang, J. Utilizing data mining techniques to predict expected freeway travel time from experienced travel time. Math. Comput. Simul. 2019, 155, 154–167. [Google Scholar] [CrossRef]
- Cai, P.; Wang, Y.; Lu, G.; Chen, P.; Ding, C.; Sun, J. A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting. Transp. Res. Part C Emerg. Technol. 2016, 62, 21–34. [Google Scholar] [CrossRef]
- Goudarzi, F. Travel Time Prediction: Comparison of Machine Learning Algorithms in a Case Study. In Proceedings of the 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Exeter, UK, 28–30 June 2018; pp. 1404–1407. [Google Scholar] [CrossRef]
- Ma, X.; Tao, Z.; Wang, Y.; Yu, H.; Wang, Y. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C Emerg. Technol. 2015, 54, 187–197. [Google Scholar] [CrossRef]
- Csikós, A.; Viharos, Z.J.; Kis, K.B.; Tettamanti, T.; Varga, I. Traffic speed prediction method for urban networks—An ANN approach. In Proceedings of the 2015 International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Budapest, Hungary, 3–5 June 2015; pp. 102–108. [Google Scholar] [CrossRef]
- Rupnik, J.; Davies, J.; Fortuna, B.; Duke, A.; Clarke, S.S. Travel Time Prediction on Highways. In Proceedings of the 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, Liverpool, UK, 26–28 June 2015; pp. 1435–1442. [Google Scholar] [CrossRef]
- Vinagre Díaz, J.J.; Rodríguez González, A.B.; Wilby, M.R. Bluetooth traffic monitoring systems for travel time estimation on freeways. IEEE Trans. Intell. Transp. Syst. 2016, 17, 123–132. [Google Scholar] [CrossRef]
- Transportation Research Board of the National Academies. Highway Capacity Manual 6th Edition: A Guide for Multimodal Mobility Analysis, 6th ed.; TRB Publications: Washington, DC, USA, 2016. [Google Scholar]
- Ghosh, B.; Basu, B.; O’Mahony, M. Multivariate Short-Term Traffic Flow Forecasting Using Time-Series Analysis. IEEE Trans. Intell. Transp. Syst. 2009, 10, 246–254. [Google Scholar] [CrossRef]
- Chandra, S.R.; Al-Deek, H. Predictions of Freeway Traffic Speeds and Volumes Using Vector Autoregressive Models. J. Intell. Transp. Syst. 2009, 13, 53–72. [Google Scholar] [CrossRef]
- Wilby, M.R.; Rodríguez González, A.B.; Fernández Pozo, R.; Vinagre Díaz, J.J. Short-term Prediction of Level of Service in Highways based on Bluetooth Identification. IEEE Trans. Intell. Transp. Syst. 2020, 23, 142–151. [Google Scholar] [CrossRef]
- Zhu, L.; Yu, F.R.; Wang, Y.; Ning, B.; Tang, T. Big Data Analytics in Intelligent Transportation Systems: A Survey. IEEE Trans. Intell. Transp. Syst. 2019, 20, 383–398. [Google Scholar] [CrossRef]
- Valadkhani, A.H.; Hong, Y.; Ramezani, M. Integration of loop and probe data for traffic state estimation on freeway and signalized arterial links. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Jin, Y.; Tan, E.; Li, L.; Wang, G.; Wang, J.; Wang, P. Hybrid Traffic Forecasting Model With Fusion of Multiple Spatial Toll Collection Data and Remote Microwave Sensor Data. IEEE Access 2018, 6, 79211–79221. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, Y.; Qu, Y.; Yin, H.; Liu, Y.; Sun, H. Travel Time Prediction: Based on Gated Recurrent Unit Method and Data Fusion. IEEE Access 2018, 6, 70463–70472. [Google Scholar] [CrossRef]
- Essien, A.; Petrounias, I.; Sampaio, P.; Sampaio, S. Improving Urban Traffic Speed Prediction Using Data Source Fusion and Deep Learning. In Proceedings of the 2019 IEEE International Conference on Big Data and Smart Computing (BigComp), Kyoto, Japan, 27 February–2 March 2019; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tseng, F.; Hsueh, J.; Tseng, C.; Yang, Y.; Chao, H.; Chou, L. Congestion Prediction With Big Data for Real-Time Highway Traffic. IEEE Access 2018, 6, 57311–57323. [Google Scholar] [CrossRef]
- Yang, S.; Qian, S. Understanding and Predicting Travel Time with Spatio-Temporal Features of Network Traffic Flow, Weather and Incidents. IEEE Intell. Transp. Syst. Mag. 2019, 11, 12–28. [Google Scholar] [CrossRef] [Green Version]
- Klunder, G.A.; Taale, H.; Kester, L.; Hoogendoorn, S. The Effect of Inaccurate Traffic Data for Ramp Metering: Comparing Loop Detectors and Cameras Using Information Utility. IFAC Proc. Vol. 2014, 47, 11318–11325. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Li, J.; Chen, F.; Ye, J.; Huai, J. Road Traffic Speed Prediction: A Probabilistic Model Fusing Multi-Source Data. IEEE Trans. Knowl. Data Eng. 2018, 30, 1310–1323. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, C. The Selective Random Subspace Predictor for Traffic Flow Forecasting. IEEE Trans. Intell. Transp. Syst. 2007, 8, 367–373. [Google Scholar] [CrossRef]
- Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Li, L.; Su, X.; Wang, Y.; Lin, Y.; Li, Z.; Li, Y. Robust causal dependence mining in big data network and its application to traffic flow predictions. Transp. Res. Part C Emerg. Technol. 2015, 58, 292–307. [Google Scholar] [CrossRef]
- Tang, J.; Li, L.; Hu, Z.; Liu, F. Short-Term Traffic Flow Prediction Considering Spatio-Temporal Correlation: A Hybrid Model Combing Type-2 Fuzzy C-Means and Artificial Neural Network. IEEE Access 2019, 7, 101009–101018. [Google Scholar] [CrossRef]
- Deng, S.; Jia, S.; Chen, J. Exploring spatial–temporal relations via deep convolutional neural networks for traffic flow prediction with incomplete data. Appl. Soft Comput. 2019, 78, 712–721. [Google Scholar] [CrossRef]
- Tang, J.; Hu, J.; Hao, W.; Chen, X.; Qi, Y. Markov Chains based route travel time estimation considering link spatio-temporal correlation. Phys. A Stat. Mech. Appl. 2020, 545, 123759. [Google Scholar] [CrossRef]
- Zheng, L.; Huang, H.; Zhu, C.; Zhang, K. A tensor-based K-nearest neighbors method for traffic speed prediction under data missing. Transp. B Transp. Dyn. 2020, 8, 182–199. [Google Scholar] [CrossRef]
- Heo, J.; Lee, H.B.; Kim, S.; Lee, J.; Kim, K.J.; Yang, E.; Hwang, S.J. Uncertainty-Aware Attention for Reliable Interpretation and Prediction. In Advances in Neural Information Processing Systems; Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; Curran Associates, Inc.: New York, NY, USA, 2018; Volume 31, pp. 909–918. [Google Scholar]
- Shi, X.; Qi, H.; Shen, Y.; Wu, G.; Yin, B. A Spatial-Temporal Attention Approach for Traffic Prediction. IEEE Trans. Intell. Transp. Syst. 2020, 22, 4909–4918. [Google Scholar] [CrossRef]
- Do, L.N.; Vu, H.L.; Vo, B.Q.; Liu, Z.; Phung, D. An effective spatial-temporal attention based neural network for traffic flow prediction. Transp. Res. Part C Emerg. Technol. 2019, 108, 12–28. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, R.; Zhou, J.; Xu, W. DeepTransport: Learning Spatial-Temporal Dependency for Traffic Condition Forecasting. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Shi, S.; Hu, X.; Wang, M. Discovering Spatial Contexts for Traffic Flow Prediction with Sparse Representation Based Variable Selection. In Proceedings of the 2015 IEEE 12th International Conference on Ubiquitous Intelligence and Computing and 2015 IEEE 12th International Conference on Autonomic and Trusted Computing and 2015 IEEE 15th International Conference on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom), Beijing, China, 10–14 August 2015; pp. 364–367. [Google Scholar] [CrossRef]
- Seiffert, C.; Khoshgoftaar, T.M.; Van Hulse, J.; Napolitano, A. RUSBoost: A Hybrid Approach to Alleviating Class Imbalance. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 2010, 40, 185–197. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R. Classification and Regression Trees, 1st ed.; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Fawcett, T. Introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Kira, K.; Rendell, L.A. The Feature Selection Problem: Traditional Methods and a New Algorithm. In Proceedings of the Tenth National Conference on Artificial Intelligence, San Jose, CA, USA, 12–16 July 1992; AAAI Press: Palo Alto, CA, USA, 1992; pp. 129–134. [Google Scholar]
- Ding, C.; Peng, H. Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 2005, 3, 185–205. [Google Scholar] [CrossRef]
Horizon | LOS A | LOS B | LOS C | LOS D | LOS E | LOS F | Total |
---|---|---|---|---|---|---|---|
5 min | |||||||
10 min | |||||||
15 min | |||||||
Total |
Horizon | Day | Link 1 | Link 2 | ||||||||||
A | B | C | D | E | F | A | B | C | D | E | F | ||
5 min | Total | ||||||||||||
Mon | |||||||||||||
Tu/We/Th | |||||||||||||
Fri | |||||||||||||
Sa/Su/ho | − | − | − | ||||||||||
10 min | Total | ||||||||||||
Mon | |||||||||||||
Tu/We/Th | |||||||||||||
Fri | |||||||||||||
Sa/Su/ho | − | − | − | ||||||||||
15 min | Total | ||||||||||||
Mon | |||||||||||||
Tu/We/Th | |||||||||||||
Fri | |||||||||||||
Sa/Su/ho | − | − | − | ||||||||||
Horizon | Day | Link 3 | Link 4 | ||||||||||
A | B | C | D | E | F | A | B | C | D | E | F | ||
5 min | Total | ||||||||||||
Mon | |||||||||||||
Tu/We/Th | |||||||||||||
Fri | |||||||||||||
Sa/Su/ho | − | − | |||||||||||
10 min | Total | ||||||||||||
Mon | |||||||||||||
Tu/We/Th | |||||||||||||
Fri | |||||||||||||
Sa/Su/ho | − | − | |||||||||||
15 min | Total | ||||||||||||
Mon | |||||||||||||
Tu/We/Th | |||||||||||||
Fri | |||||||||||||
Sa/Su/ho | − | − | |||||||||||
Horizon | Day | Link 5 | Link 6 | ||||||||||
A | B | C | D | E | F | A | B | C | D | E | F | ||
5 min | Total | ||||||||||||
Mon | − | − | |||||||||||
Tu/We/Th | |||||||||||||
Fri | |||||||||||||
Sa/Su/ho | |||||||||||||
10 min | Total | ||||||||||||
Mon | − | − | |||||||||||
Tu/We/Th | |||||||||||||
Fri | |||||||||||||
Sa/Su/ho | |||||||||||||
15 min | Total | ||||||||||||
Mon | − | − | |||||||||||
Tu/We/Th | |||||||||||||
Fri | |||||||||||||
Sa/Su/ho |
Horizon | LOS A | LOS B | LOS C | |||
---|---|---|---|---|---|---|
Previous | Current | Previous | Current | Previous | Current | |
5 min | ||||||
10 min | ||||||
15 min | ||||||
Total | ||||||
Horizon | LOS D | LOS E | LOS F | |||
Previous | Current | Previous | Current | Previous | Current | |
5 min | ||||||
10 min | ||||||
15 min | ||||||
Total |
Horizon | Total | |
Previous | Current | |
5 min | ||
10 min | ||
15 min | ||
Total |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández Pozo, R.; Rodríguez González, A.B.; Wilby, M.R.; Vinagre Díaz, J.J. Analysis of Extended Information Provided by Bluetooth Traffic Monitoring Systems to Enhance Short-Term Level of Service Prediction. Sensors 2022, 22, 4565. https://doi.org/10.3390/s22124565
Fernández Pozo R, Rodríguez González AB, Wilby MR, Vinagre Díaz JJ. Analysis of Extended Information Provided by Bluetooth Traffic Monitoring Systems to Enhance Short-Term Level of Service Prediction. Sensors. 2022; 22(12):4565. https://doi.org/10.3390/s22124565
Chicago/Turabian StyleFernández Pozo, Rubén, Ana Belén Rodríguez González, Mark Richard Wilby, and Juan José Vinagre Díaz. 2022. "Analysis of Extended Information Provided by Bluetooth Traffic Monitoring Systems to Enhance Short-Term Level of Service Prediction" Sensors 22, no. 12: 4565. https://doi.org/10.3390/s22124565
APA StyleFernández Pozo, R., Rodríguez González, A. B., Wilby, M. R., & Vinagre Díaz, J. J. (2022). Analysis of Extended Information Provided by Bluetooth Traffic Monitoring Systems to Enhance Short-Term Level of Service Prediction. Sensors, 22(12), 4565. https://doi.org/10.3390/s22124565