Main Metabolites of Pseudomonas aeruginosa: A Study of Electrochemical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Electrochemical Sensors
3. Results and Discussion
3.1. Electrochemical Properties of Pseudomonas Quinolone Signal (PQS)
3.2. Electrochemical Properties of 2-heptyl-4-hydroxyquinoline (HHQ)
3.3. Electrochemical Properties of Pyochelin (PCH)
3.4. Electrochemical Properties of 2-heptyl-4-hydroxyquinoline N-oxide (HQNO)
3.5. Electrochemical Properties of Pyocyanin (PYO)
3.6. Electroanalytical Potential
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balabanova, Y.; Gilsdorf, A.; Buda, S.; Burger, R.; Eckmanns, T.; Gärtner, B.; Groß, U.; Haas, W.; Hamouda, O.; Hübner, J.; et al. Communicable Diseases Prioritized for Surveillance and Epidemiological Research: Results of a Standardized Prioritization Procedure in Germany, 2011. PLoS ONE 2011, 6, e25691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC. Antibiotic Resistance Threats in the United States, 2013; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2013; 114p. [Google Scholar]
- Neves, P.R.; McCulloch, J.A.; Mamizuka, E.M.; Lincopan, N. Aeruginosa. In Encyclopedia of Food Microbiology; Batt, C.A., Tortorello, M.-L., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 3, pp. 253–260. ISBN 9780123847331. [Google Scholar]
- Planet, P.J. Pseudomonas aeruginosa. In Principles and Practice of Pediatric Infectious Diseases; Long, S.S., Prober, C.G., Fischer, M., Eds.; Elsevier: London, UK, 2017; pp. 866–870. ISBN 9780323401814. [Google Scholar]
- ECDC. ECDC Surveillance Report. Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Acute Care Hospitals, 2011–2012; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2013; IX+207p, ISBN 978-92-9193-485-0. [Google Scholar]
- Hidron, A.I.; Edwards, J.R.; Patel, J.; Horan, T.C.; Sievert, D.M.; Pollock, D.A.; Fridkin, S.K. Antimicrobial-Resistant Pathogens Associated with Healthcare-Associated Infections: Annual Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect. Control Hosp. Epidemiol. 2008, 29, 996–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiner, L.M.; Webb, A.K.; Limbago, B.; Dudeck, M.A.; Patel, J.; Kallen, A.J.; Edwards, J.R.; Sievert, D.M. Antimicrobial-Resistant Pathogens Associated with Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect. Control Hosp. Epidemiol. 2016, 37, 1288–1301. [Google Scholar] [CrossRef] [Green Version]
- Weiner-Lastinger, L.M.; Abner, S.; Edwards, J.R.; Kallen, A.J.; Karlsson, M.; Magill, S.S.; Pollock, D.; See, I.; Soe, M.M.; Walters, M.S.; et al. Antimicrobial-Resistant Pathogens Associated with Adult Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety Network, 2015–2017. Infect. Control Hosp. Epidemiol. 2019, 41, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Hossain, Z. Bacteria: Pseudomonas. In Encyclopedia of Food Safety; Motarjemi, Y., Moy, G., Todd, E., Eds.; Academic Press: Cambridge, MA, USA, 2014; Volume 1, pp. 490–500. ISBN 9780123786128. [Google Scholar]
- Wu, M.; Guina, T.; Brittnacher, M.; Nguyen, H.; Eng, J.; Miller, S.I. The Pseudomonas aeruginosa Proteome during Anaerobic Growth. J. Bacteriol. 2005, 187, 8185–8190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC. Antibiotic Resistance Threats in the United States, 2019; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019; X+140p. [Google Scholar]
- Livermore, D.M. Multiple Mechanisms of Antimicrobial Resistance in Pseudomonas aeruginosa: Our Worst Nightmare? Clin. Infect. Dis. 2002, 34, 634–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DIN EN ISO 13720:2010-12; Meat and Meat Products-Enumeration of Presumptive Pseudomonas spp. (ISO 13720:2010). ISO: Geneva, Switzerland, 2010.
- DIN EN ISO 16266:2008-05; Water Quality-Detection and Enumeration of Pseudomonas aeruginosa-Method by Membrane Filtration (ISO 16266:2006). ISO: Geneva, Switzerland, 2006.
- Matsuda, K.; Tsuji, H.; Asahara, T.; Kado, Y.; Nomoto, K. Sensitive Quantitative Detection of Commensal Bacteria by rRNA-Targeted Reverse Transcription-PCR. Appl. Environ. Microbiol. 2007, 73, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Reynisson, E.; Lauzon, H.L.; Magnusson, H.; Hreggvidsson, G.Ó.; Marteinsson, V.T. Rapid Quantitative Monitoring Method for the Fish Spoilage Bacteria Pseudomonas. J. Environ. Monit. 2008, 10, 1357–1362. [Google Scholar] [CrossRef]
- Sandrin, T.R.; Goldstein, J.E.; Schumaker, S. MALDI TOF MS Profiling of Bacteria at the Strain Level: A Review. Mass Spectrom. Rev. 2012, 32, 188–217. [Google Scholar] [CrossRef]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF Mass Spectrometry: An Emerging Technology for Microbial Identification and Diagnosis. Front. Microbiol. 2015, 6, 791. [Google Scholar] [CrossRef] [Green Version]
- Abbasian, F.; Ghafar-Zadeh, E.; Magierowski, S. Microbiological Sensing Technologies: A Review. Bioengineering 2018, 5, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alatraktchi, F.A.; Svendsen, W.E.; Molin, S. Electrochemical Detection of Pyocyanin as a Biomarker for Pseudomonas aeruginosa: A Focused Review. Sensors 2020, 20, 5218. [Google Scholar] [CrossRef] [PubMed]
- Mavrodi, D.V.; Bonsall, R.F.; Delaney, S.M.; Soule, M.J.; Phillips, G.; Thomashow, L.S. Functional Analysis of Genes for Biosynthesis of Pyocyanin and Phenazine-1-Carboxamide from Pseudomonas aeruginosa PAO1. J. Bacteriol. 2001, 183, 6454–6465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes, E.A.P.; Bale, M.J.; Cannon, W.H.; Matsen, J.M. Identification of Pseudomonas aeruginosa by Pyocyanin Production on Tech Agar. J. Clin. Microbiol. 1981, 13, 456–458. [Google Scholar] [CrossRef] [Green Version]
- Nowroozi, J.; Akhavan Sepahi, A.; Rashnonejad, A. Pyocyanine Biosynthetic Genes in Clinical and Environmental Isolates of Pseudomonas aeruginosa and Detection of Pyocyanine’s Antimicrobial Effects with or without Colloidal Silver Nanoparticles. Cell J. 2012, 14, 7–18. [Google Scholar]
- Sismaet, H.J.; Pinto, A.J.; Goluch, E.D. Electrochemical Sensors for Identifying Pyocyanin Production in Clinical Pseudomonas aeruginosa Isolates. Biosens. Bioelectron. 2017, 97, 65–69. [Google Scholar] [CrossRef]
- Price-Whelan, A.; Dietrich, L.E.P.; Newman, D.K. Rethinking “secondary” Metabolism: Physiological Roles for Phenazine Antibiotics. Nat. Chem. Biol. 2006, 2, 71–78. [Google Scholar] [CrossRef]
- Sismaet, H.J.; Banerjee, A.; McNish, S.; Choi, Y.; Torralba, M.; Lucas, S.; Chan, A.; Shanmugam, V.K.; Goluch, E.D. Electrochemical Detection of Pseudomonas in Wound Exudate Samples from Patients with Chronic Wounds. Wound Repair Regen. 2016, 24, 366–372. [Google Scholar] [CrossRef] [Green Version]
- Oziat, J.; Gougis, M.; Malliaras, G.G.; Mailley, P. Electrochemical Characterizations of Four Main Redox–Metabolites of Pseudomonas aeruginosa. Electroanalysis 2017, 29, 1332–1340. [Google Scholar] [CrossRef]
- Zhou, L.; Glennon, J.D.; Luong, J.H.T.; Reen, F.J.; O’Gara, F.; McSweeney, C.; McGlacken, G.P. Detection of the Pseudomonas Quinolone Signal (PQS) by Cyclic Voltammetry and Amperometry Using a Boron Doped Diamond Electrode. Chem. Commun. 2011, 47, 10347–10349. [Google Scholar] [CrossRef]
- Buzid, A.; Shang, F.; Reen, F.J.; Muimhneacháin, E.Ó.; Clarke, S.L.; Zhou, L.; Luong, J.H.T.; O’Gara, F.; McGlacken, G.P.; Glennon, J.D. Molecular Signature of Pseudomonas aeruginosa with Simultaneous Nanomolar Detection of Quorum Sensing Signaling Molecules at a Boron-Doped Diamond Electrode. Sci. Rep. 2016, 6, 30001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gethin, G. The Significance of Surface PH in Chronic Wounds. Wounds UK 2007, 3, 52–56. [Google Scholar]
- Tate, S.; MacGregor, G.; Davis, M.; Innes, J.A.; Greening, A.P. Airways in Cystic Fibrosis Are Acidified: Detection by Exhaled Breath Condensate. Thorax 2002, 57, 926–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Häussler, S.; Becker, T. The Pseudomonas Quinolone Signal (PQS) Balances Life and Death in Pseudomonas aeruginosa Populations. PLoS Pathog. 2008, 4, e1000166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandel, J.; Humbert, N.; Elhabiri, M.; Schalk, I.J.; Mislin, G.L.A.; Albrecht-Gary, A.M. Pyochelin, a Siderophore of Pseudomonas aeruginosa: Physicochemical Characterization of the Iron(Iii), Copper(Ii) and Zinc(Ii) Complexes. Dalt. Trans. 2012, 41, 2820–2834. [Google Scholar] [CrossRef]
- Bukelman, O.; Amara, N.; Mashiach, R.; Krief, P.; Meijler, M.M.; Alfonta, L. Electrochemical Analysis of Quorum Sensing Inhibition. Chem. Commun. 2009, 20, 2836–2838. [Google Scholar] [CrossRef]
- Morrison, M.M.; Seo, E.T.; Howie, J.K.; Sawyer, D.T. Flavin Model Systems. 1. The Electrochemistry of 1-Hydroxyphenazine and Pyocyanine in Aprotic Solvents. J. Am. Chem. Soc. 1978, 100, 207–211. [Google Scholar] [CrossRef]
- Sharp, D.; Gladstone, P.; Smith, R.B.; Forsythe, S.; Davis, J. Approaching Intelligent Infection Diagnostics: Carbon Fibre Sensor for Electrochemical Pyocyanin Detection. Bioelectrochemistry 2010, 77, 114–119. [Google Scholar] [CrossRef]
- Elliott, J.; Simoska, O.; Karasik, S.; Shear, J.B.; Stevenson, K.J. Transparent Carbon Ultramicroelectrode Arrays for the Electrochemical Detection of a Bacterial Warfare Toxin, Pyocyanin. Anal. Chem. 2017, 89, 6285–6289. [Google Scholar] [CrossRef] [Green Version]
- Reimer, Å.; Edvaller, B.; Johansson, B. Concentrations of the Pseudomonas aeruginosa Toxin Pyocyanin in Human Ear Secretions. Acta Oto-Laryngol. Suppl. 2000, 543, 86–88. [Google Scholar] [CrossRef]
- Wilson, R.; Sykes, D.A.; Watson, D.; Rutman, A.; Taylor, G.W.; Cole, P.J. Measurement of Pseudomonas aeruginosa Phenazine Pigments in Sputum and Assessment of Their Contribution to Sputum Sol Toxicity for Respiratory Epithelium. Infect. Immun. 1988, 56, 2515–2517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lépine, F.; Milot, S.; Déziel, E.; He, J.; Rahme, L.G. Electrospray/Mass Spectrometric Identification and Analysis of 4-Hydroxy-2-Alkylquinolines (HAQs) Produced by Pseudomonas aeruginosa. J. Am. Soc. Mass Spectrom. 2004, 15, 862–869. [Google Scholar] [CrossRef] [PubMed]
- Ortori, C.A.; Dubern, J.F.; Chhabra, S.R.; Cámara, M.; Hardie, K.; Williams, P.; Barrett, D.A. Simultaneous Quantitative Profiling of N-Acyl-l-Homoserine Lactone and 2-Alkyl-4(1H)-Quinolone Families of Quorum-Sensing Signaling Molecules Using LC-MS/MS. Anal. Bioanal. Chem. 2011, 399, 839–850. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schneider, S.; Ettenauer, J.; Pap, I.-J.; Aspöck, C.; Walochnik, J.; Brandl, M. Main Metabolites of Pseudomonas aeruginosa: A Study of Electrochemical Properties. Sensors 2022, 22, 4694. https://doi.org/10.3390/s22134694
Schneider S, Ettenauer J, Pap I-J, Aspöck C, Walochnik J, Brandl M. Main Metabolites of Pseudomonas aeruginosa: A Study of Electrochemical Properties. Sensors. 2022; 22(13):4694. https://doi.org/10.3390/s22134694
Chicago/Turabian StyleSchneider, Sylvia, Jörg Ettenauer, Ildiko-Julia Pap, Christoph Aspöck, Julia Walochnik, and Martin Brandl. 2022. "Main Metabolites of Pseudomonas aeruginosa: A Study of Electrochemical Properties" Sensors 22, no. 13: 4694. https://doi.org/10.3390/s22134694
APA StyleSchneider, S., Ettenauer, J., Pap, I. -J., Aspöck, C., Walochnik, J., & Brandl, M. (2022). Main Metabolites of Pseudomonas aeruginosa: A Study of Electrochemical Properties. Sensors, 22(13), 4694. https://doi.org/10.3390/s22134694