Enriching Facial Anti-Spoofing Datasets via an Effective Face Swapping Framework
Abstract
:1. Introduction
- We propose an effective face swapping framework, which can generate photorealistic results.
- We use the identity weight generation module to increase the attention to the identity information.
- We propose an adaptive identity editing module to realize the identity transformation.
- We utilize post-processing to improve the authenticity, and experiments verify the efficiency of our face swapping framework.
2. Related Works
2.1. Generative Adversarial Network
2.2. Deep Face Forgery Detection Methods and Datasets
2.3. Latent Code Editing
2.4. Face Forgery Technologies
3. Method
3.1. Exploration and Motivation
3.2. Encoder, Mapping Network, and Generator
3.3. Identity Editing Module
3.3.1. Identity Weight Generation
3.3.2. Adaptive Identity Editing
3.4. Post-Processing
3.5. Loss Functions
3.5.1. Identity Loss
3.5.2. Self-Reconstruction Loss
3.5.3. Attribute Loss
3.5.4. Objective Function
4. Results and Experiments
4.1. Dataset and Experimental Setting
4.1.1. Dataset
4.1.2. Experimental Setting
4.2. Evaluation Metrics
4.2.1. Identity Similarity
4.2.2. Expression Similarity
4.2.3. FID
4.3. The Generation Results of Our Model
4.4. Superiority of the Adaptive Identity Editing Module
4.4.1. Qualitative Analysis
4.4.2. Quantitative Analysis
4.5. Comparison with Other Models
4.5.1. Qualitative Analysis
4.5.2. Quantitative Analysis
5. Conclusions and Expectations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torabi, S.; Bou-Harb, E.; Assi, C.; Karbab, E.B.; Boukhtouta, A.; Debbabi, M. Inferring and Investigating IoT-Generated Scanning Campaigns Targeting a Large Network Telescope. IEEE Trans. Dependable Secur. Comput. 2022, 19, 402–418. [Google Scholar] [CrossRef]
- Yang, J.; Han, Y.; Wang, Y.; Jiang, B.; Lv, Z.; Song, H. Optimization of real-time traffic network assignment based on IoT data using DBN and clustering model in smart city. Future Gener. Comput. Syst. 2020, 108, 976–986. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pougetabadie, J.; Mirza, M.; Xu, B.; Wardefarley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the 28th Annual Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Yang, J.; Li, Y.; Gao, L. Harmful algal bloom warning based on machine learning in maritime site monitoring. Knowl.-Based Syst. 2022, 245, 108569. [Google Scholar] [CrossRef]
- Feng, C.; Liu, B.; Yu, K.; Goudos, S.K.; Wan, S. Blockchain-Empowered Decentralized Horizontal Federated Learning for 5G-Enabled UAVs. IEEE Trans. Ind. Inform. 2022, 18, 3582–3592. [Google Scholar] [CrossRef]
- Lee, J.; Paek, J.S.; Hong, S. Millimeter-Wave Frequency Reconfigurable Dual-Band CMOS Power Amplifier for 5G Communication Radios. IEEE Trans. Microw. Theory Tech. 2022, 70, 801–812. [Google Scholar] [CrossRef]
- Wu, C.J.; Ku, C.F.; Ho, J.M.; Chen, M.S. A Novel Pipeline Approach for Efficient Big Data Broadcasting. IEEE Trans. Knowl. Data Eng. 2016, 28, 17–28. [Google Scholar] [CrossRef]
- Karnouskos, S. Artificial Intelligence in Digital Media: The Era of Deepfakes. IEEE Trans. Technol. Soc. 2020, 1, 138–147. [Google Scholar] [CrossRef]
- Li, Y.; Chao, X. Distance-Entropy: An effective indicator for selecting informative data. Front. Plant Sci. 2021, 12, 818895. [Google Scholar] [CrossRef]
- Li, Y.; Chao, X.; Ercisli, S. Disturbed-Entropy: A simple data quality assessment approach. ICT Express 2022, in press. [CrossRef]
- Yang, J.; Zhang, Z.; Gong, Y.; Ma, S.; Guo, X.; Yang, Y.; Xiao, S.; Wen, J.; Li, Y.; Gao, X.; et al. Do Deep Neural Networks Always Perform Better When Eating More Data? arXiv 2022, arXiv:2205.15187. [Google Scholar]
- Li, Y.; Yang, J.; Wen, J. Entropy-Based redundancy analysis and information screening. Digit. Commun. Netw. 2021, in press. [CrossRef]
- Li, Y.; Chao, X. Semi-supervised few-shot learning approach for plant diseases recognition. Plant Methods 2021, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. Analyzing and Improving the Image Quality of StyleGAN. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 8107–8116. [Google Scholar] [CrossRef]
- Schönfeld, E.; Schiele, B.; Khoreva, A. A U-Net Based Discriminator for Generative Adversarial Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 8204–8213. [Google Scholar] [CrossRef]
- Li, Y.; Chao, X. Toward sustainability: Trade-off between data quality and quantity in crop pest recognition. Front. Plant Sci. 2021, 12, 811241. [Google Scholar] [CrossRef]
- Nirkin, Y.; Keller, Y.; Hassner, T. FSGAN: Subject Agnostic Face Swapping and Reenactment. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 7183–7192. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Bao, J.; Yang, H.; Chen, D.; Wen, F. Advancing High Fidelity Identity Swapping for Forgery Detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 5073–5082. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, S.; Li, A.; Lu, W.; Gao, X.; Li, Y. MSTA-Net: Forgery Detection by Generating Manipulation Trace Based on Multi-scale Self-texture Attention. In IEEE Transactions on Circuits and Systems for Video Technology; IEEE: Piscataway, NJ, USA, 2021; p. 1. [Google Scholar] [CrossRef]
- Yang, J.; Li, A.; Xiao, S.; Lu, W.; Gao, X. MTD-Net: Learning to Detect Deepfakes Images by Multi-Scale Texture Difference. IEEE Trans. Inf. Forensics Secur. 2021, 16, 4234–4245. [Google Scholar] [CrossRef]
- Huang, X.; Belongie, S. Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1510–1519. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Mogren, O. C-RNN-GAN: Continuous recurrent neural networks with adversarial training. arXiv 2016, arXiv:1611.09904. [Google Scholar]
- Antoniou, A.; Storkey, A.; Edwards, H. Data augmentation generative adversarial networks. arXiv 2017, arXiv:1711.04340. [Google Scholar]
- Tariq, S.; Lee, S.; Kim, H.; Shin, Y.; Woo, S.S. Gan is a friend or foe? a framework to detect various fake face images. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, Limassol, Cyprus, 8–12 April 2019; pp. 1296–1303. [Google Scholar]
- Yang, J.; Xiao, S.; Li, A.; Lan, G.; Wang, H. Detecting fake images by identifying potential texture difference. Future Gener. Comput. Syst. 2021, 125, 127–135. [Google Scholar] [CrossRef]
- Yu, N.; Davis, L.; Fritz, M. Attributing Fake Images to GANs: Learning and Analyzing GAN Fingerprints. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 7555–7565. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Yin, G.; Sheng, L.; Chen, Z.; Shao, J. Thinking in frequency: Face forgery detection by mining frequency-aware clues. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 86–103. [Google Scholar]
- Li, Y.; Yang, X.; Sun, P.; Qi, H.; Lyu, S. Celeb-DF: A Large-Scale Challenging Dataset for DeepFake Forensics. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 3204–3213. [Google Scholar] [CrossRef]
- Jiang, L.; Li, R.; Wu, W.; Qian, C.; Loy, C.C. Deeperforensics-1.0: A large-scale dataset for real-world face forgery detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 2889–2898. [Google Scholar]
- Dolhansky, B.; Bitton, J.; Pflaum, B.; Lu, J.; Howes, R.; Wang, M.; Ferrer, C.C. The deepfake detection challenge (dfdc) dataset. arXiv 2020, arXiv:2006.07397. [Google Scholar]
- Härkönen, E.; Hertzmann, A.; Lehtinen, J.; Paris, S. Ganspace: Discovering interpretable gan controls. Adv. Neural Inf. Process. Syst. 2020, 33, 9841–9850. [Google Scholar]
- Shen, Y.; Yang, C.; Tang, X.; Zhou, B. InterFaceGAN: Interpreting the Disentangled Face Representation Learned by GANs. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 2004–2018. [Google Scholar] [CrossRef] [PubMed]
- Denton, E.; Hutchinson, B.; Mitchell, M.; Gebru, T. Detecting Bias with Generative Counterfactual Face Attribute Augmentation. 2019. Available online: https://www.arxiv-vanity.com/papers/1906.06439/ (accessed on 3 June 2022).
- Patashnik, O.; Wu, Z.; Shechtman, E.; Cohen-Or, D.; Lischinski, D. StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 2065–2074. [Google Scholar] [CrossRef]
- Doukas, M.C.; Koujan, M.R.; Sharmanska, V.; Roussos, A.; Zafeiriou, S. Head2Head++: Deep Facial Attributes Re-Targeting. IEEE Trans. Biom. Behav. Identity Sci. 2021, 3, 31–43. [Google Scholar] [CrossRef]
- Wiles, O.; Koepke, A.; Zisserman, A. X2face: A network for controlling face generation using images, audio, and pose codes. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 670–686. [Google Scholar]
- Choi, Y.; Choi, M.; Kim, M.; Ha, J.W.; Kim, S.; Choo, J. Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8789–8797. [Google Scholar]
- Güera, D.; Delp, E.J. Deepfake Video Detection Using Recurrent Neural Networks. In Proceedings of the 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Auckland, New Zealand, 27–30 November 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Natsume, R.; Yatagawa, T.; Morishima, S. Rsgan: Face swapping and editing using face and hair representation in latent spaces. arXiv 2018, arXiv:1804.03447. [Google Scholar]
- Nirkin, Y.; Hassner, T.; Keller, Y. FSGANv2: Better Subject Agnostic Face Swapping and Reenactment. In IEEE Transactions on Pattern Analysis and Machine Intelligence; IEEE: Piscataway, NJ, USA, 2022; p. 1. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Q.; Wang, J.; Xu, C.; Sun, Z. One Shot Face Swapping on Megapixels. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 19–25 June 2021; pp. 4832–4842. [Google Scholar] [CrossRef]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Deng, J.; Guo, J.; Xue, N.; Zafeiriou, S. ArcFace: Additive Angular Margin Loss for Deep Face Recognition. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 4685–4694. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of gans for improved quality, stability, and variation. arXiv 2017, arXiv:1710.10196. [Google Scholar]
- Liu, Z.; Luo, P.; Wang, X.; Tang, X. Large-scale celebfaces attributes (celeba) dataset. Retrieved August 2018, 15, 11. [Google Scholar]
- Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Kangjin, W.; Yong, Y.; Ying, L.; Hanmei, L.; Lin, M. FID: A Faster Image Distribution System for Docker Platform. In Proceedings of the 2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS*W), Tucson, AZ, USA, 18–22 September 2017; pp. 191–198. [Google Scholar] [CrossRef]
- Chen, R.; Chen, X.; Ni, B.; Ge, Y. SimSwap: An Efficient Framework for High Fidelity Face Swapping. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; pp. 2003–2011. [Google Scholar]
Method | Id Similarity ↑ | Exp Similarity ↓ | FID ↓ |
---|---|---|---|
0.57 | 0.25 | 58.7864 | |
0.58 | 0.23 | 58.8624 |
Method | Id Similarity ↑ | Exp Similarity ↓ | FID ↓ |
---|---|---|---|
0.37 | 3.32 | 216.78 | |
0.45 | 1.64 | 67.54 | |
0.54 | 1.31 | 69.84 | |
0.51 | 0.19 | 58.9625 | |
0.58 | 0.19 | 58.8624 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Lan, G.; Xiao, S.; Li, Y.; Wen, J.; Zhu, Y. Enriching Facial Anti-Spoofing Datasets via an Effective Face Swapping Framework. Sensors 2022, 22, 4697. https://doi.org/10.3390/s22134697
Yang J, Lan G, Xiao S, Li Y, Wen J, Zhu Y. Enriching Facial Anti-Spoofing Datasets via an Effective Face Swapping Framework. Sensors. 2022; 22(13):4697. https://doi.org/10.3390/s22134697
Chicago/Turabian StyleYang, Jiachen, Guipeng Lan, Shuai Xiao, Yang Li, Jiabao Wen, and Yong Zhu. 2022. "Enriching Facial Anti-Spoofing Datasets via an Effective Face Swapping Framework" Sensors 22, no. 13: 4697. https://doi.org/10.3390/s22134697
APA StyleYang, J., Lan, G., Xiao, S., Li, Y., Wen, J., & Zhu, Y. (2022). Enriching Facial Anti-Spoofing Datasets via an Effective Face Swapping Framework. Sensors, 22(13), 4697. https://doi.org/10.3390/s22134697